• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 19
  • 16
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Model Misspecification and the Hedging of Exotic Options

Balshaw, Lloyd Stanley 30 August 2018 (has links)
Asset pricing models are well established and have been used extensively by practitioners both for pricing options as well as for hedging them. Though Black-Scholes is the original and most commonly communicated asset pricing model, alternative asset pricing models which incorporate additional features have since been developed. We present three asset pricing models here - the Black-Scholes model, the Heston model and the Merton (1976) model. For each asset pricing model we test the hedge effectiveness of delta hedging, minimum variance hedging and static hedging, where appropriate. The options hedged under the aforementioned techniques and asset pricing models are down-and-out call options, lookback options and cliquet options. The hedges are performed over three strikes, which represent At-the-money, Out-the-money and In-the-money options. Stock prices are simulated under the stochastic-volatility double jump diffusion (SVJJ) model, which incorporates stochastic volatility as well as jumps in the stock and volatility process. Simulation is performed under two ’Worlds’. World 1 is set under normal market conditions, whereas World 2 represents stressed market conditions. Calibrating each asset pricing model to observed option prices is performed via the use of a least squares optimisation routine. We find that there is not an asset pricing model which consistently provides a better hedge in World 1. In World 2, however, the Heston model marginally outperforms the Black-Scholes model overall. This can be explained through the higher volatility under World 2, which the Heston model can more accurately describe given the stochastic volatility component. Calibration difficulties are experienced with the Merton model. These difficulties lead to larger errors when minimum variance hedging and alternative calibration techniques should be considered for future users of the optimiser.
12

Heston vs Black Scholes stock price modelling

Bucic, Ida January 2021 (has links)
In this thesis the Black Scholes and the Heston stock prices are investigated and the models are compared. The Black Scholes model assumes that the volatility is constant, while the Heston model allows stochastic volatility which is more flexible and can perform better with empirical data. Both models are analysed and simulated, and the parameters are estimated based on empirical data of S&P 500. Results are based on simulations and characteristic functions which are presented with figures of probability density functions.
13

Bermudan Option Pricing using Almost-Exact Scheme under Heston-type Models

Kalicanin Dimitrov, Mara January 2022 (has links)
Black and Scholes have proposed a model for pricing European options where the underlying asset follows a so-called geometric Brownian motion which assumes constant volatility. The proposed Black-Scholes model has an exact solution. However, it has been shown that such an assumption of constant volatility is not realistic, and numerous extensions have been developed. In addition, models usually do not have a closed-form solution which makes pricing a challenging task. The thesis focuses on pricing Bermudan options under two stochastic volatility Heston-type models using an Almost-Exact scheme for simulation. Namely, we focus on deriving the Almost-Exact scheme for Heston and Double Heston model and numerically study the behaviour of the scheme. We show that the AES works well when the number of simulated steps is equal to the number of exercise dates which makes it efficient.
14

Obchodní strategie v neúplném trhu / Obchodní strategie v neúplném trhu

Bunčák, Tomáš January 2011 (has links)
MASTER THESIS ABSTRACT TITLE: Trading Strategy in Incomplete Market AUTHOR: Tomáš Bunčák DEPARTMENT: Department of Probability and Mathematical Statistics, Charles University in Prague SUPERVISOR: Andrea Karlová We focus on the problem of finding optimal trading strategies (in a meaning corresponding to hedging of a contingent claim) in the realm of incomplete markets mainly. Although various ways of hedging and pricing of contingent claims are outlined, main subject of our study is the so-called mean-variance hedging (MVH). Sundry techniques used to treat this problem can be categorized into two approaches, namely a projection approach (PA) and a stochastic control approach (SCA). We review the methodologies used within PA in diversely general market models. In our research concerning SCA, we examine the possibility of using the methods of optimal stochastic control in MVH, and we study the problem of our interest in several settings of market models; involving cases of pure diffusion models and a jump- diffusion case. In order to reach an exemplary comparison, we provide solutions of the MVH problem in the setting of the Heston model via techniques of both of the approaches. Some parts of the thesis are accompanied with numerical illustrations.
15

Métodos de simulação Monte Carlo para aproximação de estratégias de hedging ideais / Monte Carlo simulation methods to approximate hedging strategies

Siqueira, Vinicius de Castro Nunes de 27 July 2015 (has links)
Neste trabalho, apresentamos um método de simulação Monte Carlo para o cálculo do hedging dinâmico de opções do tipo europeia em mercados multidimensionais do tipo Browniano e livres de arbitragem. Baseado em aproximações martingales de variação limitada para as decomposições de Galtchouk-Kunita-Watanabe, propomos uma metodologia factível e construtiva que nos permite calcular estratégias de hedging puras com respeito a qualquer opção quadrado integrável em mercados completos e incompletos. Uma vantagem da abordagem apresentada aqui é a flexibilidade de aplicação do método para os critérios quadráticos de minimização do risco local e de variância média de forma geral, sem a necessidade de se considerar hipóteses de suavidade para a função payoff. Em particular, a metodologia pode ser aplicada para calcular estratégias de hedging quadráticas multidimensionais para opções que dependem de toda a trajetória dos ativos subjacentes em modelos de volatilidade estocástica e com funções payoff descontínuas. Ilustramos nossa metodologia, fornecendo exemplos numéricos dos cálculos das estratégias de hedging para opções vanilla e opções exóticas que dependem de toda a trajetória dos ativos subjacentes escritas sobre modelos de volatilidade local e modelos de volatilidade estocástica. Ressaltamos que as simulações são baseadas em aproximações para os processos de preços descontados e, para estas aproximações, utilizamos o método numérico de Euler-Maruyama aplicado em uma discretização aleatória simples. Além disso, fornecemos alguns resultados teóricos acerca da convergência desta aproximação para modelos simples em que podemos considerar a condição de Lipschitz e para o modelo de volatilidade estocástica de Heston. / In this work, we present a Monte Carlo simulation method to compute de dynamic hedging of european-type contingent claims in a multidimensional Brownian-type and arbitrage-free market. Based on bounded variation martingale approximations for the Galtchouk-Kunita- Watanabe decomposition, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to any square-integrable contingent claim in complete and incomplete markets. An advantage of our approach is the exibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff function. In particular, the methodology can be applied to compute multidimensional quadratic hedgingtype strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate our methodology, providing some numerical examples of the hedging strategies to vanilla and exotic contingent claims written on local volatility and stochastic volatility models. The simulations are based in approximations to the discounted price processes and, for these approximations, we use an Euler-Maruyama-type method applied to a simple random discretization. We also provide some theoretical results about the convergence of this approximation in simple models where the Lipschitz condition is satisfied and the Heston\'s stochastic volatility model.
16

Monte Carlo Simulation of Heston Model in MATLAB GUI

Kheirollah, Amir January 2006 (has links)
<p>In the Black-Scholes model, the volatility considered being deterministic and it causes some</p><p>inefficiencies and trends in pricing options. It has been proposed by many authors that the</p><p>volatility should be modelled by a stochastic process. Heston Model is one solution to this</p><p>problem. To simulate the Heston Model we should be able to overcome the correlation</p><p>between asset price and the stochastic volatility. This paper considers a solution to this issue.</p><p>A review of the Heston Model presented in this paper and after modelling some investigations</p><p>are done on the applet.</p><p>Also the application of this model on some type of options has programmed by MATLAB</p><p>Graphical User Interface (GUI).</p>
17

Monte Carlo Simulation of Heston Model in MATLAB GUI

Kheirollah, Amir January 2006 (has links)
In the Black-Scholes model, the volatility considered being deterministic and it causes some inefficiencies and trends in pricing options. It has been proposed by many authors that the volatility should be modelled by a stochastic process. Heston Model is one solution to this problem. To simulate the Heston Model we should be able to overcome the correlation between asset price and the stochastic volatility. This paper considers a solution to this issue. A review of the Heston Model presented in this paper and after modelling some investigations are done on the applet. Also the application of this model on some type of options has programmed by MATLAB Graphical User Interface (GUI).
18

On autocorrelation estimation of high frequency squared returns

Pao, Hsiao-Yung 14 January 2010 (has links)
In this paper, we investigate the problem of estimating the autocorrelation of squared returns modeled by diffusion processes with data observed at non-equi-spaced discrete times. Throughout, we will suppose that the stock price processes evolve in continuous time as the Heston-type stochastic volatility processes and the transactions arrive randomly according to a Poisson process. In order to estimate the autocorrelation at a fixed delay, the original non-equispaced data will be synchronized. When imputing missing data, we adopt the previous-tick interpolation scheme. Asymptotic property of the sample autocorrelation of squared returns based on the previous-tick synchronized data will be investigated. Simulation studies are performed and applications to real examples are illustrated.
19

Métodos de simulação Monte Carlo para aproximação de estratégias de hedging ideais / Monte Carlo simulation methods to approximate hedging strategies

Vinicius de Castro Nunes de Siqueira 27 July 2015 (has links)
Neste trabalho, apresentamos um método de simulação Monte Carlo para o cálculo do hedging dinâmico de opções do tipo europeia em mercados multidimensionais do tipo Browniano e livres de arbitragem. Baseado em aproximações martingales de variação limitada para as decomposições de Galtchouk-Kunita-Watanabe, propomos uma metodologia factível e construtiva que nos permite calcular estratégias de hedging puras com respeito a qualquer opção quadrado integrável em mercados completos e incompletos. Uma vantagem da abordagem apresentada aqui é a flexibilidade de aplicação do método para os critérios quadráticos de minimização do risco local e de variância média de forma geral, sem a necessidade de se considerar hipóteses de suavidade para a função payoff. Em particular, a metodologia pode ser aplicada para calcular estratégias de hedging quadráticas multidimensionais para opções que dependem de toda a trajetória dos ativos subjacentes em modelos de volatilidade estocástica e com funções payoff descontínuas. Ilustramos nossa metodologia, fornecendo exemplos numéricos dos cálculos das estratégias de hedging para opções vanilla e opções exóticas que dependem de toda a trajetória dos ativos subjacentes escritas sobre modelos de volatilidade local e modelos de volatilidade estocástica. Ressaltamos que as simulações são baseadas em aproximações para os processos de preços descontados e, para estas aproximações, utilizamos o método numérico de Euler-Maruyama aplicado em uma discretização aleatória simples. Além disso, fornecemos alguns resultados teóricos acerca da convergência desta aproximação para modelos simples em que podemos considerar a condição de Lipschitz e para o modelo de volatilidade estocástica de Heston. / In this work, we present a Monte Carlo simulation method to compute de dynamic hedging of european-type contingent claims in a multidimensional Brownian-type and arbitrage-free market. Based on bounded variation martingale approximations for the Galtchouk-Kunita- Watanabe decomposition, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to any square-integrable contingent claim in complete and incomplete markets. An advantage of our approach is the exibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff function. In particular, the methodology can be applied to compute multidimensional quadratic hedgingtype strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate our methodology, providing some numerical examples of the hedging strategies to vanilla and exotic contingent claims written on local volatility and stochastic volatility models. The simulations are based in approximations to the discounted price processes and, for these approximations, we use an Euler-Maruyama-type method applied to a simple random discretization. We also provide some theoretical results about the convergence of this approximation in simple models where the Lipschitz condition is satisfied and the Heston\'s stochastic volatility model.
20

Accélération de la méthode de Monte Carlo pour des processus de diffusions et applications en Finance / Improved Monte Carlo method for diffusion processes and applications in Finance

Hajji, Kaouther 12 December 2014 (has links)
Dans cette thèse, on s’intéresse à la combinaison des méthodes de réduction de variance et de réduction de la complexité de la méthode Monte Carlo. Dans une première partie de cette thèse, nous considérons un modèle de diffusion continu pour lequel on construit un algorithme adaptatif en appliquant l’importance sampling à la méthode de Romberg Statistique Nous démontrons un théorème central limite de type Lindeberg Feller pour cet algorithme. Dans ce même cadre et dans le même esprit, on applique l’importance sampling à la méthode de Multilevel Monte Carlo et on démontre également un théorème central limite pour l’algorithme adaptatif obtenu. Dans la deuxième partie de cette thèse,on développe le même type d’algorithme pour un modèle non continu à savoir les processus de Lévy. De même, nous démontrons un théorème central limite de type Lindeberg Feller. Des illustrations numériques ont été menées pour les différents algorithmes obtenus dans les deux cadres avec sauts et sans sauts. / In this thesis, we are interested in studying the combination of variance reduction methods and complexity improvement of the Monte Carlo method. In the first part of this thesis,we consider a continuous diffusion model for which we construct an adaptive algorithm by applying importance sampling to Statistical Romberg method. Then, we prove a central limit theorem of Lindeberg-Feller type for this algorithm. In the same setting and in the same spirit, we apply the importance sampling to the Multilevel Monte Carlo method. We also prove a central limit theorem for the obtained adaptive algorithm. In the second part of this thesis, we develop the same type of adaptive algorithm for a discontinuous model namely the Lévy processes and we prove the associated central limit theorem. Numerical simulations are processed for the different obtained algorithms in both settings with and without jumps.

Page generated in 0.0581 seconds