Spelling suggestions: "subject:"heterogeneous catalyst"" "subject:"heterogeneous eatalyst""
31 |
Ultraselective nanocatalysts in fine chemical and pharmaceutical synthesisChan, Chun Wong Aaron January 2012 (has links)
Surface catalysed reactions play an important role in chemical productions. Developments of catalyst requiring high activity whilst improving on product selectivity can potentially have a profound effect in the chemical industry. Traditional catalyst modifications were focused on tuning the size, shape and foreign metal doping to form well defined metal nanoparticles of unique functionalities. Here, we show new approach to engineering of metal nanocatalysts via a subsurface approach can modify the chemisorption strength of adsorbates on the surface. Carbon modified nanoparticles were synthesised using glucose to stabilise Pd nanoparticles at a molecular level. Upon heat treatment, the carbonised glucose encapsulated the Pd nanoparticles with carbon atoms take residence in the octahedral holes (15 at.%). These materials were tested in liquid phase stereoselective hydrogenations of 3-hexyn-1-ol and 4-octyne. The former has importance in the fragrance industry towards the production of leaf fragrance alcohol. It was shown for the first time that the geometrically and electronically modified Pd with interstitial carbon atoms reduced the adsorption energy of alkenes, ultimately leading to higher reaction selectivity. Boron modified Pd nanoparticles was synthesised using BH<sub>3</sub>.THF in the liquid phase. The material possess high B interstitial saturation (20 at.%), which can be synthesised for the first time below 100°C. These materials were tested in the liquid phase selective hydrogenation of various alkynes and 2-chloronitrobenzene, of which the latter has importance in the pesticides industry. Kinetic modelling on the hydrogenation of 4-octyne suggests these subsurface occupied B does play a pivotal role on increasing the reaction selectivity, as removal of these species lead to decreased selectivity. Au nanoparticles were synthesised and characterised using H<sup>13</sup>COOH NMR. The new liquid NMR characterisation method is successfully applied to examine the chemisorption strength of metal nanoparticles. An attempt to synthesise PVP capped B modified Pd nanoparticles with the above NMR characterisation was investigated. It is believed the examples of subsurface atom modifications as shown here may offer future catalyst developments in this area.
|
32 |
DESIGNED SYNTHESIS OF NANOPOROUS ORGANIC POLYMERS FOR SELECTIVE GAS UPTAKE AND CATALYTIC APPLICATIONSArab, Pezhman 01 January 2015 (has links)
Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture.
Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, regenerability, and working capacity, ALPs are among the best porous organic frameworks for selective CO2 capture.
In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore, the functionalized polymer shows high binding affinity for CO2 due to this Lewis acid-based interaction. The functionalization of the pores with Cu(BF4)2 resulted in a significant enhancement in CO2 binding energy, CO2 uptake capacity, and CO2 selectivity values. Due to high reactivity of bis(imino)pyridines toward transitions metals, BIPLP-1 can be post-synthetically functionalized with a wide variety of inorganic species for CO2 separation and catalytic applications.
|
33 |
Influence of modifiers on Palladium based nanoparticles for room temperature formic acid decompositionJones, Simon Philip January 2013 (has links)
Heterogeneous catalysts form a highly important part of everyday life, ranging from the production of fertiliser enabling the growth of crops that sustain much of the world's population to the production of synthetic fuels. They constitute a key part of the chemical industry and contribute towards substantial economic and environmental benefits. Heterogeneous catalysts are also believed to have an important role to play in a future hydrogen economy, reducing our requirements for fossil fuels. To this end, formic acid has been proposed as a potential hydrogen storage material for small portable devices. Additionally, formic acid has historically been used as a probe molecule to study catalyst materials and recent developments in the knowledge of its decomposition pathways and the preferred sites of these reactions, establish a good foundation for further study. This work explores a range of novel modification techniques that alter the activity of Pd nanoparticles to decompose formic acid to H<sub>2</sub> and CO<sub>2</sub>. The methods used are the addition of polymers, attaching various functional groups to the surface of the catalyst support and decoration of nanoparticles with sub-monolayer coverages of another metal. Using a range of characterisation methods including FTIR of an adsorbed CO probe, XRD and XPS coupled with computational modelling, it is found that these methods result in some significant electronic and/or geometric alterations to the Pd nanoparticles. For polymer modification, the nature of the pendent group is highly important in determining the effects of the polymer on the Pd particles, with all the tested polymers resulting in varying degrees of electronic donation to the Pd surface. The geometric modifications caused by the polymers also varied with pendent groups; with amine containing pendent groups found to selectively block low coordinate sites, preventing the undesired dehydration of formic acid which results in poisoning of the Pd catalyst by the resulting CO. Attachment of amine groups to the surface of metal oxide catalyst supports, is demonstrated to result in dramatic electronic promotional effects to the supported Pd nanoparticles, and when an amine polymer is attached to the support surface the geometric modification is again observed. Finally decoration of Pd nanoparticles with a sub-monolayer coverage of a second metal is examined, resulting in some similar electronic and geometric effects on Pd nanoparticle surfaces to those observed with polymer modification with corresponding changes in formic acid decomposition activity. Overall, a number of methods are displayed to tune the catalytic activity and selectivity of Pd nanoparticles for formic acid decomposition, resulting in catalysts with some of the highest reported TOF's at room temperature. These modification methods are believed to be potentially applicable to a wide range of other catalytic reactions that operate under mild conditions.
|
34 |
Efici?ncia do processo de obten??o do biodiesel de girassol usando o catalisador KNO3/Al2O3Silva, J?lio C?sar Teixeira da 19 April 2012 (has links)
Made available in DSpace on 2014-12-17T15:41:58Z (GMT). No. of bitstreams: 1
JulioCTS_DISSERT.pdf: 2360843 bytes, checksum: 9fc8ef936717b3177303c0d0bd2e0718 (MD5)
Previous issue date: 2012-04-19 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and
energy. The biodiesel production is based on the transesterifica??o of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterifica??o presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterifica??o of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst)
they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was
verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what
obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ?steres, in accordance with the quantitative
measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis
termogravim?trica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides / Sabe-se que a matriz energ?tica mundial est? apoiada nos combust?veis f?sseis. No entanto, o panorama mundial est? mudando rapidamente, por motivos ligados a tr?s das
grandes preocupa??es da humanidade nesse in?cio de s?culo: meio ambiente, economia global e energia. A produ??o de biodiesel ? baseada na transesterifica??o de ?leos vegetais ou
gorduras animais, utilizando catalisadores homog?neos ou heterog?neos. O processo de transesterifica??o heterog?nea apresenta convers?es mais baixas em compara??o com o
homog?neo, por?m, n?o apresenta problemas de corros?o e reduz ? ocorr?ncia de rea??es paralelas como saponifica??o. Neste sentido, este trabalho tem por finalidade a s?ntese de um
catalisador heterog?neo, o KNO3/Al2O3, que em seguida foi utilizado na rea??o de transesterifica??o do ?leo da Helianthus annuus L.(girassol). Os materiais s?lidos (suporte e
catalisador) foram analisados por difra??o de raios-X (DRX) e microsc?pio eletr?nico de varredura (MEV). Ap?s a an?lise da Al2O3, foi constatada uma estrutura monof?sica tetragonal amorfa, com padr?es caracter?sticos desse material, o que pode ser visualizado no difratograma do catalisador. O biodiesel obtido com 4% m/m de KNO3/Al2O3 foi o que obteve uma melhor viscosidade cinem?tica 8,3 mm2/s, comparando com as normas da ANP, e tamb?m apresentou a melhor taxa de convers?o em ?steres et?licos, em conformidade com a medida quantitativa a partir da TG, que foi de 60%. Enquanto o biodiesel com 6% m/m e com 8% m/m de KNO3/Al2O3 foi o que n?o transesterificou, pois foi observado na an?lise termogravim?trica desses dois materiais, um ?nico evento t?rmico, que corresponde a
decomposi??o ou volatiliza??o dos triglicer?deos
|
35 |
Effect Of Stabilizer On The Catalytic Activity Of Cobalt(0) Nanoclusters Catalyst In The Hydrolysis Of Sodium BorohydrideKocak, Ebru 01 December 2009 (has links) (PDF)
The development of new storage materials will facilitate the use of hydrogen as a major energy carrier in near future. Among the chemical hydrides used as hydrogen storage materials for supplying hydrogen at ambient temperature, sodium borohydride seems to be an ideal one because it is stable under ordinary
conditions and liberates hydrogen gas in a safe and controllable way in aqueous solutions. However, self hydrolysis of sodium borohydride is so slow that requires a suitable catalyst. This work aims the use of water dispersible cobalt(0) nanoclusters
having large portion of atoms on the surface as catalyst for the hydrolysis of sodium borohydride. In-situ formation of cobalt(0) nanoclusters and catalytic hydrolysis of sodium borohydride were performed starting with a cobalt(II) chloride as precursor
and sodium borohydride as reducing agent and substrate in the presence of a water soluble stabilizer. As stabilizer, water soluble polyacrylic acid as well as hydrogen phosphate ion were tested. Cobalt(0) nanoclusters were characterized by using all
the available analytical methods including FT-IR, TEM, XPS, UV-visible electronic absorption spectroscopy. The kinetics of cobalt(0) nanoclusters catalyzed hydrolysis of sodium borohydride were studied depending on the catalyst concentration, substrate concentration, stabilizing agent concentration and temperature.
|
36 |
Synthesis And Characterization Of Hydrogenphosphate-stabilized Nickel(0) Nanoclusters As Catalyst For The Hydrolysis Of Sodium BorohydrideMetin, Onder 01 May 2006 (has links) (PDF)
The development of new storage materials will facilitate the use of hydrogen as a major energy carrier in near future. In hydrogen economy, chemical hydrides such as NaBH4, KBH4, LiH, NaH have been tested as hydrogen storage materials for supplying hydrogen at ambient temperature. Among these chemical hydrides, sodium borohydride seems to be an ideal hydrogen storage material because it is stable under ordinary conditions and liberates hydrogen gas in a safe and controllable way in aqueous solutions. However, self hydrolysis of sodium borohydride is so slow that it requires a suitable catalyst. All of the prior catalysts tested for the hydrolysis of sodium borohydride are heterogeneous and, therefore, have limited activity because of the small surface area. Here, we report for the first time the employment of water dispersible metal(0) nanoclusters having a large portion of atoms on the surface as a catalyst for the hydrolysis of sodium borohydride.
In-situ formation of nickel(0) nanoclusters and catalytic hydrolysis of sodium borohydride were performed in the same medium. Nickel(0) nanoclusters are prepared from the reduction of nickel(II) acetylacetonate by sodium borohydride in aqueous solution and stabilized with hydrogenphosphate anions. The nickel(0) nanoclusters were characterized by using XPS, Powder XRD, FT-IR, UV-Vis and NMR spectroscopic methods. The kinetics of the nickel(0) nanoclusters catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration, stabilizing agent concentration and temperature. Tha kinetic study shows that the nickel(0) nanocluster-catalyzed hydrolysis of sodium borohydride is first order with respect to catalyst concentration and zero order with respect to substrate concentration The activation parameters of this reaction were also determined from the evaluation of the kinetic data. The hydrogenphosphate-stabilized nickel(0) nanoclusters provide a lower activation energy (Ea= 55 kJ/mol) than bulk nickel (Ea=73 kJ/mol) for the hydrolysis of sodium borohydride.
|
37 |
Fabrication de carburant synthétique par valorisation du CO2 et de la chaleur nucléaire / The production of synthetic fuel by CO2 valorization using nuclear energyVibhatavata, Phuangphet 25 October 2012 (has links)
Ce travail s’inscrit dans le contexte d’un fort accroissement des émissions de gaz à effetde serre au niveau mondial. Une idée est de réutiliser ce CO2 comme matrice de stockageénergétique pour fabriquer un carburant de synthèse en le combinant avec de l’hydrogèneproduit à partir de décomposition de l’eau par apport d’énergie nucléaire ou renouvelable,évitant ainsi le recours au pétrole ou au charbon. Cette idée prend tout son sens dans lecontexte spécifique français où l’électricité, majoritairement produite par énergie nucléaire etrenouvelable a une faible empreinte carbone. Dans ce cadre nous nous proposonsd’hydrogéner le CO2 en gaz de synthèse par la réaction Reverse Water-Gas-Shift (RWGS),lequel gaz de synthèse est alors transformé en carburant. Ce projet de recherche est composéde deux parties principales :La première partie se focalise sur le développement d’un catalyseur sélectif et stable pourla réaction de RWGS à température modérée (723-773 K). A cet égard nous avons procédé àune modélisation conjointe de la micro-cinétique de la réaction de RWGS et des principalesréactions parasites pour déterminer un composé multi-métallique innovant ; celui-ci a pu êtreconfronté avec succès aux catalyseurs industriels utilisés, dans les conditions optimales de laréaction de RWGS. Dans une deuxième partie, nous avons effectué un remontagethermodynamique de l’ensemble d’une conversion du CO2 issu de fumées industrielles encarburant de synthèse (dimethyl ether, DME) sur un cas concret à grande échelle en France.La simulation du procédé CO2 to DME montre une efficacité énergétique du procédé de 52%et une réduction des émissions du CO2 de la cimenterie de 88%. / This work is in the context of large-scale efforts to enhance greenhouse gas emissionsmitigation. A potential way to recycle CO2 as a carbon feedstock to produce a synthetic fuelby the conversion of CO2 and hydrogen, produced from water electrolysis using nuclear orrenewable energy. This process may be sustainable in some specific context like in Frenchcontext; French electricity is mainly generated by nuclear and renewable energies that havelow carbon footprints. In this work, a synthetic fuel is produced by CO2 hydrogenation intosynthesis gas via the Reverse Water-Gas Shift (RWGS) reaction, then synthesis gas isconverted into a synthetic fuel. This research project consists of two main parts:The first part focuses on the development of a selective and stable catalyst for the RWGSreaction at moderate temperature (723-773 K). We have applied the micro-kinetic approach ofthe RWGS reaction and its side reactions in order to determine a multi-metallic catalyst,which has shown to perform better selectivity and stability than a conventional, commercialcatalyst under the optimal operating conditions of the RWGS reaction. In the second part, weconducted the simulations of a large-scale dimethyl ether (DME) production process by theconversion of CO2 from industrial flue gases in the French context. The simulation of the CO2to DME process showed the process energy efficiency of 52% and the emissions reductionpotential of 88% of total CO2 emissions.
|
38 |
Study on the integration of controllability and diagnosability of reactive distillation columns as from the conceptual design step. Application to the production of ethyl acetate. / Etude de l’intégration de la contrôlabilité et de la diagnosticabilité des colonnes de distillation réactive dès la phase de conception. Application à la production d’acétate d’éthyle.Figueiredo-Fernandez, Mayra 15 July 2013 (has links)
La distillation réactive est un exemple emblématique de l’intensification de procédés. Cependant, le couplage réaction/séparation génère des complexités importantes en termes de dynamique, de contrôle et de supervision qui constituent une barrière pour leur mise en œuvre industrielle. Ces aspects doivent être considérés dès la phase de conception sous peine de concevoir une colonne difficilement contrôlable. Une méthodologie existante est étendue afin d’y intégrer les aspects de contrôlabilité et de diagnosticabilité. L’étape de conception étudie les courbes de résidu et extractives réactives, identifie les paramètres opérationnels et propose des configurations de colonne respectant les spécifications. La meilleure configuration est choisie sur des critères de contrôlabilité par l’analyse de différents indicateurs quantitatifs et qualitatifs identifiés à l’aide de simulations en régime permanent et dynamique. La méthodologie est appliquée à la production industrielle d’acétate d’éthyle. Deux campagnes expérimentales ont permis de fiabiliser le modèle de simulation de la colonne. La méthodologie permet d’identifier les sensibilités et montre que il est possible d’agir sur les trois degrés de liberté de la colonne double alimentation pour atteindre les spécifications industrielles ; les variables contrôlées sont sélectionnées dans des sections spécifiques, similaires pour différentes configurations de colonne. Concernant le diagnostic, l’utilisation de capteurs de composition semble la plus pertinente mais la complexité de leur utilisation industrielle (cout) peut être contournée par la sélection d’un nombre plus important de capteurs de température judicieusement positionnés. Les résultats de contrôlabilité et de diagnosticabilité sont en cohérence et bien intégrés dans la conception des colonnes réactives. / Reactive distillation involves complexities on process dynamics, control and supervision. This work proposes a methodology integrating controllability and diagnosability as from conceptual design. The choice of the most appropriate feasible configuration is conducted though an indices-based method, regarding steady-state and dynamic simulations, for the ethyl acetate production. Experimental campaigns were performed to acquire reliable models. The methodology highlights the process sensitivities and shows that three degrees of freedom of the double-feed column can be manipulated to ensure the industrial specifications; the controlled variables are selected at similar specific locations for all column configurations. Concerning diagnosis, the use of composition sensors seems to be the most appropriate solution, but the same performances can be reached with more temperature sensors judiciously placed.
|
39 |
Produção de biodiesel utilizando óxido de cálcio e zirconato de sódio livre e suportado em materiais poliméricosVaz, Lorena Michele Oliveira 26 March 2015 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Biodiesel is commonly produced by the transesterification reaction of oils or fats, in the presence of an alcohol of short chain and a catalyst. The development of suitable heterogeneous catalysts is important in order to propose alternative processes that are economically viable for biodiesel production as well as to facilitate the purification steps. In this research, two different catalysts (calcium oxide, CaO, and sodium zirconate, Na2ZrO3) were evaluated for biodiesel production in their free form and also supported on polymeric materials. Moreover, different reactor configurations were evaluated: reactor with magnetic stirring (MS), with recycle (RL) and with ultrasonic agitation (US). For the assays with CaO, the obtained reaction yield was approximately the same (80% of Fatty Acid Methyl Esther - FAME) in the three proposed reactor configurations. The reusability of CaO was evaluated in the ultrasonic reactor, but the results were not satisfactory for more than the first reaction cycle due to the catalyst deactivation. Moreover, the polymers evaluated to support CaO did no resist the reaction conditions. The catalyst Na2ZrO3 was evaluated in its free form and also supported in poly (vinyl alcohol) (PVA) and in reactors with magnetic stirring and with ultrasonic agitations. The obtained kinetic profile showed that, in the beginning, the reaction is slower in the ultrasonic reactor than in the reactor with magnetic stirring. However, at the end, both reactor configurations reached the same yield. A composite central planning was carried out to evaluate the optimal conditions of methanol:oil molar ration and catalyst loading (%) when using the free and supported catalysts and in the magnetic stirring and ultrasonic reactor. The answer was evaluated in terms of %FAME and viscosity. Reactions were performed at a fixed temperature and time (55°C and 6 h). Different answers were obtained for the different reactor configurations. For the free catalyst in the reactor with magnetic stirring, great values of %FAME and low values of viscosity are obtained in the central region of the composite central planning. For the free catalyst in the ultrasonic reactor, the best values are obtained at higher values of methanol:oil molar ratio and at the central region of the catalyst loading. For the supported catalyst in the reactor with magnetic stirring, the best values are obtained in the region of 5 to 7% of catalyst loading and methanol:oil molar ratio of 10:1 to 30:1. For the supported catalyst in the ultrasonic reactor, the best values are obtained at higher methanol:oil molar ratios, but at lower catalyst loadings. These results are associated with the mass transfers related to the different degree of agitation in both reactors and to the accessibility to active sites of the catalyst. The catalyst reuse was evaluated in five sequential baths without intermediated washings with solvents. For both reactor configurations, the Na2ZrO3 presented suitable stability. Results showed that the heterogeneous catalysis is a viable alternative for biodiesel production. Moreover, the utilization of a supported catalyst is feasible due to the easier catalyst recovery. The ultrasonic assisted reactor is also a suitable alternative. / Um dos processos mais comuns para a obtenção do biodiesel é a transesterificação de óleos ou gorduras, na presença de um álcool de cadeia curta e de um catalisador. O desenvolvimento de catalisadores heterogêneos eficientes é relevante na busca de processos alternativos que sejam economicamente viáveis para a produção comercial de biodiesel e para redução de etapas de purificação. Neste trabalho, estudou-se óxido de cálcio (CaO) e zirconato de sódio (Na2ZrO3) em suas formas livre e em suportado materiais poliméricos como catalisadores para produção de biodiesel utilizando-se diferentes configurações de reatores, sendo elas: reator com agitação magnética (MS), com reciclo (RL) e com agitação ultrassônica (US). Para os ensaios com CaO, utilizaram-se as três configurações de reatores propostas e o rendimento, que foi avaliado por meio do teor de ésteres no biodiesel também conhecido como FAME (Fatty Acid Methyl Esther), das reações foi semelhante (aproximadamente 80%). O reuso do CaO foi avaliado em agitação ultrassônica, porém não apresentou resultados satisfatórios além do primeiro ciclo, dada a inativação do catalisador. Além disso, os polímeros avaliados para suportar CaO não resistiram às condições reacionais. Para o catalisador Na2ZrO3 nas formas livre e suportado em poli (vinil álcool) (PVA), avaliou-se o perfil da %FAME ao longo da reação nos reatores com agitação magnética e em ultrassom. Os resultados mostraram que apesar da reação se proceder de forma mais lenta no início quando realizada em ultrassom, ao final do processo obteve-se conversão semelhante para as duas configurações de reator e catalisador. Para cada configuração de reator e condição do catalisador foi realizado um planejamento composto central (PCC) para se avaliar as condições ótimas de quantidade de catalisador e razão molar metanol:óleo, em termos de viscosidade e % FAME como resposta, utilizando o zirconato de sódio Na2ZrO3 como catalisador alcalino nas formas livre e suportado em (PVA) a uma temperatura de 55°C e tempo de reação de 6 h. Os resultados de %FAME e viscosidade foram avaliados pela superfície de resposta obtida para cada tipo de reator e forma de catalisador. Percebeu-se que na região central do PCC se encontram valores elevados de % de FAME e baixa viscosidade para o catalisador livre em reator MS. Para o reator US, foram encontrados valores maiores na região com elevadas RM e quantidade de catalisador na região central. Para o catalisador suportado em PVA, os melhores resultados de % de FAME e viscosidade foram encontrados, em reator MS, na região de 5 a 7% de catalisador e RM (metanol:óleo) de 10:1 a 30:1, enquanto para o reator US foram encontrados os melhores resultados também em elevada RM, porém com baixa quantidade de catalisador. Estes resultados podem ser explicados pelas diferentes velocidades de transferência de massa (agitação) nos dois reatores e pelas diferentes transferências de massa no interior do catalisador quando este se encontra na sua forma livre ou suportado. A reutilização do catalisador foi avaliada realizando-se bateladas sequenciais com o mesmo catalisador ao longo de cinco ciclos de reação nas mesmas condições da reação com o catalisador novo (1° ciclo), sem a utilização de solvente para lavagem. Para os dois tipos de reatores (MS e US) o Na2ZrO3 apresentou resultados satisfatórios para a transesterificação do óleo de soja, tanto para a forma livre quanto suportada em PVA e ainda apresentou comportamento que favorece a reutilização deste catalisador por ciclos consecutivos. Os resultados mostraram que a catálise heterogênea é uma alternativa viável para produção de biodiesel. Além disso, a utilização do catalisador suportado pode ser uma vantagem no que se refere a recuperação do catalisador do meio reacional. A agitação em banho ultrassônico também se mostrou uma alternativa viável. / Mestre em Engenharia Química
|
40 |
HETEROGENEOUS BASE METAL CATALYZED OXIDATIVE DEPOLYMERIZATION OF LIGNIN AND LIGNIN MODEL COMPOUNDSJennings, John Adam 01 January 2017 (has links)
With the dwindling availability of petroleum, focus has shifted to renewable energy sources such as lignocellulosic biomass. Lignocellulosic biomass is composed of three main constituents, lignin, cellulose and hemicellulose. Due to the low value of cellulosic ethanol, utilization of the lignin component is necessary for the realization of an economically sustainable biorefinery model. Once depolymerized, lignin has the potential to replace petroleum-derived molecules used as bulk and specialty aromatic chemicals. Numerous lignin depolymerization strategies focus on cleavage of β-aryl ether linkages, usually at high temperatures and under reductive conditions.
Alternatively, selective benzylic oxidation strategies have recently been explored for lignin and lignin models. In this work, heterogeneous catalytic methods using supported base metals and layered-double hydroxides were evaluated for the oxidation of lignin models both before and after benzylic oxidation. Additionally, by studying putative reaction intermediates, insights were gained into the mechanisms of oxidative fragmentation of the model compounds.
Generally, it was found that after benzylic oxidation models were more susceptible to oxidative fragmentation. Indeed, several heterogeneous oxidation systems were found to convert lignin models to oxygenated aryl monomers (mainly benzoic acids and phenols) using inexpensive primary oxidants (i.e., hydrogen peroxide and molecular oxygen). Reactions were conducted at relatively mild temperatures and at low oxygen concentrations for the purpose of an easy transition to large-scale experiments. Finally, the catalytic systems that resulted in significant cleavage of lignin models were applied to a Kraft lignin. Oxidation of Kraft lignin resulted a mixture of products for which analytical data and increased solubility are consistent with interunit cleavage within the lignin macromolecule.
|
Page generated in 0.0897 seconds