• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement d'électrodes transparentes par méthodes de dépôt à pression atmosphérique et bas coût pour applications photovoltaïques / Development of transparent electrodes by vacuum-free and low cost deposition methods for photovoltaic applications

Nguyen, Viet Huong 08 October 2018 (has links)
Le travail de thèse implique l'étude de matériaux conducteurs transparents sans indium (TCM), composants essentiels de nombreux dispositifs optoélectroniques, utilisant le dépôt spatial de couches atomiques sous pression atmosphérique (AP-SALD). Cette nouvelle technique partage les avantages principaux de l'ALD classique, mais en plus permet le dépôt de couches minces de haute qualité sur de grandes surfaces avec un contrôle précis à l’échelle nanométrique. Ce travail est focalisé sur l'optimisation des propriétés électriques des films d'oxyde de zinc dopé à l'aluminium (ZnO: Al), l'un des oxydes conducteurs les plus étudiés (TCOs). L'influence de plusieurs paramètres expérimentaux sur les propriétés physiques des films a été étudié. Le mécanisme de transport des porteurs de charge au niveau des joints de grains a été identifié comme étant l'émission tunnel plutôt que l’émission thermoïonique dans le ZnO fortement dopé, grâce à un nouveau modèle que nous avons développé en utilisant la méthode de la matrice de transfert à fonction Airy (AFTMM). En résumé, la densité du piège à électrons aux joints de grains pour les échantillons de ZnO:Al (2,2 × 10^20 cm-3) préparés par AP-SALD a été estimée à environ 7,6 ×10^13 cm-2. Notre modèle montre que la diffusion par les joints de grains est le mécanisme de diffusion dominant dans nos films fabriqués par AP-SALD. Nous avons trouvé que le recuit assisté par UV (~ 200 ° C) sous vide était une méthode efficace pour réduire les pièges aux joints de grains, entraînant une amélioration de la mobilité de 1 cm2V-1s-1 à 24 cm2V-1s-1 pour ZnO et à 6 cm2V -1s-1 pour ZnO:Al. Nous avons également utilisé AP-SALD pour fabriquer des TCM performants, stables et flexibles basés sur un réseau de nanofils métalliques. Pour cela, nous avons développé des électrodes composites en revêtant des nanofils argent ou cuivre (AgNWs ou CuNWs) avec ZnO, Al2O3, ou ZnO: Al. Un revêtement très conforme d’une épaisseur de quelques dizaines de nanomètres déposé par la technique AP-SALD améliore considérablement les stabilités thermique et électrique du réseau AgNWs ou CuNWs. Les propriétés optoélectroniques élevées (résistance de surface 10 ohms/carré, transmittance ~ 90%) du composite AgNW / ZnO: Al les rendent très appropriés pour une application en tant que TCM, en particulier pour les dispositifs flexibles.Enfin, en tant que technique de dépôt versatile, AP-SALD est bien compatible avec la technologie des cellules solaires à hétérojonction de silicium (Si-HET) en termes de passivation d'interface. L'intégration de TCM ZnO: Al et AgNWs à la cellule Si-HET a également été explorée. / The thesis work involves the study of Indium-free Transparent Conductive Materials (TCMs), key components of many optoelectronic devices, using Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD). This new approach shares the main advantages of conventional ALD but allows open-air, very fast deposition of high-quality nanometer-thick materials over large surfaces. We focused on the optimization of the electrical properties of Aluminum doped Zinc Oxide (ZnO:Al) films, one of the most studied Transparent Conductive Oxides (TCOs). The effect of several experimental parameters on the physical properties of the deposited films has been evaluated. The carrier transport mechanism at grain boundaries was identified to be tunneling rather than thermionic emission in highly doped ZnO, thanks to a new model we have developed using the Airy Function Transfer Matrix Method. Accordingly, the electron trap density at grain boundaries for ZnO:Al samples (2.2×1020 cm-3) prepared by AP-SALD was estimated to be about 7.6×1013 cm-2. Our model shows that grain boundary scattering is the dominant scattering mechanism in our films. We found that UV assisted annealing (~ 200 °C) under vacuum was an efficient method to reduce grain boundary traps, resulting in an improvement of mobility from 1 cm2V-1s-1 to 24 cm2V-1s-1 for ZnO and to 6 cm2V-1s-1 for ZnO:Al. We have also used AP-SALD to fabricate high-performance, stable and flexible TCMs based on metallic nanowire network. For that, we developed composite electrodes by coating silver/copper nanowires (AgNWs/CuNWs) with ZnO, Al2O3, or ZnO:Al. A thin conformal coating deposited by AP-SALD technique enhanced drastically the thermal/electrical stability of the AgNWs/CuNWs network. High optoelectronic properties (resistivity ~ 10-4 Ωcm, transmittance ~ 90 %) of the AgNW/ZnO:Al composite make them very appropriate for application as TCM, especially for flexible devices.Finally, as a soft deposition technique, AP-SALD is completely compatible to the Silicon heterojunction (Si-HET) solar cell technology in terms of interface passivation. The integration of ZnO:Al and AgNWs based TCMs to Si-HET cell has also been explored.
12

Studium fotovoltaických nanostruktur mikroskopickými metodami / Study of photovoltaic nanostructures using microscopy methods

Hertl, Vít January 2018 (has links)
V této diplomové práci je nejprve ve zkratce uvedena teorie fyziky solárních článků, kde jsou zmíněny klíčové procesy ovlivňující účinnost konverze slunečního záření na elektrickou energii. Dále je předložena rešerše o fotovoltaických nanostrukturách (nanodráty, nanokrystaly), jejichž implementací je možné účinnost solárních článků zvýšit. V přehledu experimentálních technik ke zkoumání fotovoltaických nanostruktur je důraz kladen zejména na korelativní měření pomocí SEM a AFM, vodivostního AFM, měření EBIC a mikroskopické měření elektroluminiscence. V experimentální části jsou předloženy výsledky měření struktur mikrokrystalického křemíku, vzorku hetero-přechodového Si solárního článku s kontakty na zadní straně (IBC-SHJ z projektu NextBase) a V-pitů vzorku InGaN/GaN kvantových jam. Měření elektroluminiscence bylo provedeno na vzorcích III-V polovodičů (InGaP, GaAs). Byly vypočítány jinak těžko dostupné charakteristiky III-V tandemových solárních článků pomocí elektroluminiscence a srovnání vlastností IBC-SHJ zjištěných pomocí mikroskopického měření elektroluminiscence a EBIC. Provedením experimentů bylo zjištěno, jakým způsobem se dělí proud vybuzený svazkem elektronů mezi hrot AFM a vzorek mikrokrystalického křemíku.
13

Development Of Cu2ZnSnS4/ZnS Thin Film Heterojunction Solar Cells By Ultrasonic Spray Pyrolysis

Prabhakar, Tejas 12 1900 (has links) (PDF)
Semiconductors such as CuInGaSe2 and CdTe have been investigated as absorber layer materials for thin film solar cells since their band gap matches with the solar spectrum. Films as thin as 2m are sufficient for the absorption of the visible part of solar radiation, because they are characterized by a high absorption coefficient. However, the scarcity and high costs of Indium, Gallium and Tellurium have led to concerns on the sustainability of these technologies. The semiconductor Cu2ZnSnS4 (Copper Zinc Tin Sulphide) consisting of abundantly available elements promises to be an excellent photovoltaic absorber material. The present study is focused on the growth and characterization of CZTS/ZnS thin film heterostructure suitable for PV applications. Ultrasonic Spray Pyrolysis (USP), a variation of Spray Pyrolysis is a thin film deposition technique where the solution to be sprayed is atomized by ultrasonic frequencies. The details of the USP experimental set up and the deposition principle are presented in the thesis. The active layers of the solar cell, viz. the CZTS absorber layer and ZnS emitter layer were grown by this technique. The metal top contact was deposited using e-beam evaporation. The effects of copper concentration and sodium diffusion on the Cu2ZnSnS4 film properties were investigated. The films have shown preferred orientation along (112) direction confirming kesterite structure. The optical studies revealed that a reduction of copper in the films will bring the band gap energy to 1.5eV, which will match with the solar spectrum. Sodium diffusion in the CZTS films is found to passivate the grain boundaries and enhance the electrical conductivity. These properties render CZTS films as good photovoltaic absorber layers. ZnS has a high band gap and is non toxic unlike CdS. The influences of variation in substrate temperature and spray duration on the ZnS film properties were examined. The optical studies conducted on ZnS films revealed that they are highly transparent in the visible region of the solar spectrum. The films were found to possess a band gap of 3.5 eV. These properties make them potential candidates as solar cell emitter layers. The CZTS/ZnS heterojunction solar cell was fabricated and subjected to electrical characterization in dark and illuminated conditions. A conversion efficiency of 1.16% was achieved for the device.
14

Studies on AgInS2 Films as Absorber Layer for Heterojunction Solar Cells

Sunil, Maligi Anantha January 2016 (has links) (PDF)
Currently conventional sources like coal, petroleum and natural gas meet the energy requirements of developing and undeveloped countries. Over a period of time there is high risk of these energy sources getting depleted. Hence an alternate source of energy i.e. renewable energy is the need of the hour. The advantages of renewable energy like higher sustainability, lesser maintenance, low cost of operation, and minimal impact on the environment make the role of renewable energy sources significant. Out of the various renewable energy sources like solar energy, wind energy, hydropower, biogas, tidal and geothermal, usage of solar energy is gradually increasing. Among various solar energy sources, Photovoltaics has dominated over the past two decades since it is free clean energy and availability of abundant sunlight on earth. Over the past few decades, thin film solar cells (TFSC) have gained considerable interest as an economically feasible alternative to conventional silicon (Si) photovoltaic devices. TFSCs have the potential to be as efficient as Si solar cells both in terms of conversion efficiency as well as cost. The advantages of TFSC are that they are easy to prepare, lesser thickness, requires lesser materials, light weight, low cost and opto-electronic properties can be tuned by varying the process parameters. The present study is focused on the fabrication of AgInS2/ZnS heterojunction thin film solar cell. AgInS2 absorber layer is deposited using both vacuum (sputtering/sulfurization) and non-vacuum (ultrasonic spray pyrolysis) techniques. ZnS window layer is prepared using thermal evaporation technique, detailed experimental investigation has been conducted and the results have been reported in this work. The thesis is divided into 6 chapters. Chapter 1 gives general introduction about solar cells and working principle of solar cell. It also discusses thin film solar cell technology and its advantages. Layers of thin film solar cell structure, Significance of each layers and possible materials to be used are emphasized. A detailed overview of the available literature on both AgInS2 absorber layer and ZnS window layer has been presented. Based on the literature review, objectives of the present work are defined. Chapter 2 explains the theory and experimental details of deposition techniques used for the growth of AgInS2 and ZnS films. Details of characterization techniques to study film properties are described in detail. Chapter 3 presents a systematic study of AgInS2 thin films deposited by sulfurization of sputtered Ag-In metallic precursors. Initially, AgInS2 films are deposited by varying the substrate temperature and properties of as-deposited films are characterized. Structural, morphological, electrical and optical properties of AgInS2 films are explained. From these studies, samples with better properties at particular substrate temperature are optimized. By fixing the substrate temperature, deposition time of silver is varied by keeping other deposition conditions same and the properties of films are discussed. It was observed that deposition time of silver doesn’t have much impact on structural properties of AgInS2 films. However, opto-electric properties of AgInS2 films are enhanced. Based on characterization studies, deposition time of silver is optimized. Deposition time of indium is varied by keeping substrate temperature and silver deposition to optimized value. The properties of as-deposited films are discussed. Based on the above studies, the optimized p type films have a band gap of 1.64 eV, carrier concentration of 1013 ions/cm3 and Resistivity of order 103 Ω-cm. Chapter 4 presents a systematic study of AgInS2 thin films deposited by ultrasonic spray pyrolysis. AgInS2 films are deposited by varying the substrate temperature and properties of as deposited films are characterized. Structural, morphological, electrical and optical properties of AgInS2 films are explained. From these studies, samples with better properties at particular substrate temperature are optimized. By fixing the substrate temperature, concentration of silver molarity in the precursor solution is varied by keeping other deposition conditions same and the properties of films are discussed. Structural, optical and electrical properties of AgInS2 films are enhanced with the increase in silver concentration. Based on characterization studies, concentration of silver is optimized. Similarly concentration of indium molarity in the precursor solution is varied and the properties of as-deposited films are discussed. Finally, sulfur molarity in the precursor solution is varied and properties of films are discussed. It was observed that increasing sulfur after certain limit does not have any effect on the properties of the films. Based on the above studies, this method resulted in the films with resistivity of 103 Ω-cm and band gap of 1.64 eV. These films showed a carrier concentration of 1013 ions/cm3. Chapter 5 describes the growth of ZnS films using thermal evaporation technique. Influence of thickness on the properties of ZnS films is explained. Samples with good crystallinity, high transmission, and wider gap are selected for device fabrication. This p type layer showed a band gap of 3.52 eV. Solar cells have been fabricated using the AgInS2 films developed by both sputtering and ultrasonic spray pyrolysis techniques. A maximum cell efficiency of 0.92 percent has been achieved for the cell with 0.950 µm thick sputtered AgInS2 layer and thermally evaporated 42 nm thick ZnS layer. In comparison, the ultrasonic spray pyrolysis deposited films gave an efficiency of 0.54 percent. These values are comparable to those mentioned in a couple of reports earlier. Chapter 6 summarizes the conclusions drawn from the present investigations and scope of future work is suggested.

Page generated in 0.3623 seconds