Spelling suggestions: "subject:"hierarchical likelihood"" "subject:"ierarchical likelihood""
1 |
Verossimilhança hierárquica em modelos de fragilidade / Hierarchical likelihood in frailty modelsAmorim, William Nilson de 12 February 2015 (has links)
Os métodos de estimação para modelos de fragilidade vêm sendo bastante discutidos na literatura estatística devido a sua grande utilização em estudos de Análise de Sobrevivência. Vários métodos de estimação de parâmetros dos modelos foram desenvolvidos: procedimentos de estimação baseados no algoritmo EM, cadeias de Markov de Monte Carlo, processos de estimação usando verossimilhança parcial, verossimilhança penalizada, quasi-verossimilhança, entro outros. Uma alternativa que vem sendo utilizada atualmente é a utilização da verossimilhança hierárquica. O objetivo principal deste trabalho foi estudar as vantagens e desvantagens da verossimilhança hierárquica para a inferência em modelos de fragilidade em relação a verossimilhança penalizada, método atualmente mais utilizado. Nós aplicamos as duas metodologias a um banco de dados real, utilizando os pacotes estatísticos disponíveis no software R, e fizemos um estudo de simulação, visando comparar o viés e o erro quadrático médio das estimativas de cada abordagem. Pelos resultados encontrados, as duas metodologias apresentaram estimativas muito próximas, principalmente para os termos fixos. Do ponto de vista prático, a maior diferença encontrada foi o tempo de execução do algoritmo de estimação, muito maior na abordagem hierárquica. / Estimation procedures for frailty models have been widely discussed in the statistical literature due its widespread use in survival studies. Several estimation methods were developed: procedures based on the EM algorithm, Monte Carlo Markov chains, estimation processes based on parcial likelihood, penalized likelihood and quasi-likelihood etc. An alternative currently used is the hierarchical likelihood. The main objective of this work was to study the hierarchical likelihood advantages and disadvantages for inference in frailty models when compared with the penalized likelihood method, which is the most used one. We applied both approaches to a real data set, using R packages available. Besides, we performed a simulation study in order to compare the methods through out the bias and the mean square error of the estimators. Both methodologies presented very similar estimates, mainly for the fixed effects. In practice, the great difference was the computational cost, much higher in the hierarchical approach.
|
2 |
Verossimilhança hierárquica em modelos de fragilidade / Hierarchical likelihood in frailty modelsWilliam Nilson de Amorim 12 February 2015 (has links)
Os métodos de estimação para modelos de fragilidade vêm sendo bastante discutidos na literatura estatística devido a sua grande utilização em estudos de Análise de Sobrevivência. Vários métodos de estimação de parâmetros dos modelos foram desenvolvidos: procedimentos de estimação baseados no algoritmo EM, cadeias de Markov de Monte Carlo, processos de estimação usando verossimilhança parcial, verossimilhança penalizada, quasi-verossimilhança, entro outros. Uma alternativa que vem sendo utilizada atualmente é a utilização da verossimilhança hierárquica. O objetivo principal deste trabalho foi estudar as vantagens e desvantagens da verossimilhança hierárquica para a inferência em modelos de fragilidade em relação a verossimilhança penalizada, método atualmente mais utilizado. Nós aplicamos as duas metodologias a um banco de dados real, utilizando os pacotes estatísticos disponíveis no software R, e fizemos um estudo de simulação, visando comparar o viés e o erro quadrático médio das estimativas de cada abordagem. Pelos resultados encontrados, as duas metodologias apresentaram estimativas muito próximas, principalmente para os termos fixos. Do ponto de vista prático, a maior diferença encontrada foi o tempo de execução do algoritmo de estimação, muito maior na abordagem hierárquica. / Estimation procedures for frailty models have been widely discussed in the statistical literature due its widespread use in survival studies. Several estimation methods were developed: procedures based on the EM algorithm, Monte Carlo Markov chains, estimation processes based on parcial likelihood, penalized likelihood and quasi-likelihood etc. An alternative currently used is the hierarchical likelihood. The main objective of this work was to study the hierarchical likelihood advantages and disadvantages for inference in frailty models when compared with the penalized likelihood method, which is the most used one. We applied both approaches to a real data set, using R packages available. Besides, we performed a simulation study in order to compare the methods through out the bias and the mean square error of the estimators. Both methodologies presented very similar estimates, mainly for the fixed effects. In practice, the great difference was the computational cost, much higher in the hierarchical approach.
|
3 |
Comparison of existing ZOI estimation methods with different model specifications and data.Mukhopadhyay, Shraddha January 2020 (has links)
With the increasing demand and interest in wind power worldwide, it is interesting to study the effects of running windfarms on the activity of reindeers and estimate the associated Zone of Influence (ZOI) relative to these disturbances. Through simulation, Hierarchical Likelihood (HL) and adaptive Lasso methods are used to estimate the ZOI of windfarms and catching the correct threshold at which the negative effect of the disturbances on the reindeer behaviour disappears. The results found some merit to the explanation that the negative effect may not disappear abruptly and more merit to the fact that a linear model was still a better choice than the smooth polynomial models used. A real-life data related to reindeer faecal pellet counts from an area in northern Sweden were windfarms were running were analyzed. The yearly time series data was divided into three periods : before construction, during construction and during operation of the windfarms. Logistic regression, segmented model, and HL methods were implemented for data analysis by using covariates as distance from wind turbine, vegetation type, the interaction between distance to wind turbine and time period. A significant breakpoint could be estimated using the segmented model at a distance of 2.8 km from running windfarm, after which the negative effects of the windfarm on the reindeer activity disappeared. However, further work is needed for estimation of ZOI using HL method and considering other possible factors causing disturbances to the reindeer habitat and behaviour.
|
Page generated in 0.0771 seconds