Spelling suggestions: "subject:"verossimilhança penalized"" "subject:"verossimilhança penalização""
1 |
Seleção de covariáveis para modelos de sobrevivência via verossimilhança penalizada / Variable selection for survival models based on penalized likelihoodPinto Junior, Jony Arrais 18 February 2009 (has links)
A seleção de variáveis é uma importante fase para a construção de um modelo parcimonioso. Entretanto, as técnicas mais populares de seleção de variáveis, como, por exemplo, a seleção do melhor subconjunto de variáveis e o método stepwise, ignoram erros estocásticos inerentes à fase de seleção das variáveis. Neste trabalho, foram estudados procedimentos alternativos aos métodos mais populares para o modelo de riscos proporcionais de Cox e o modelo de Cox com fragilidade gama. Os métodos alternativos são baseados em verossimilhançaa penalizada e diferem dos métodos usuais de seleção de variáveis, pois têm como objetivo excluir do modelo variáveis não significantes estimando seus coeficientes como zero. O estimador resultante possui propriedades desejáveis com escolhas apropriadas de funções de penalidade e do parâmetro de suavização. A avaliação desses métodos foi realizada por meio de simulação e uma aplicação a um conjunto de dados reais foi considerada. / Variable selection is an important step when setting a parsimonious model. However, the most popular variable selection techniques, such as the best subset variable selection and the stepwise method, do not take into account inherent stochastic errors in the variable selection step. This work presents a study of alternative procedures to more popular methods for the Cox proportional hazards model and the frailty model. The alternative methods are based on penalized likelihood and differ from the usual variable selection methods, since their objective is to exclude from the model non significant variables, estimating their coefficient as zero. The resulting estimator has nice properties with appropriate choices of penalty functions and the tuning parameter. The assessment of these methods was studied through simulations, and an application to a real data set was considered.
|
2 |
Verossimilhança hierárquica em modelos de fragilidade / Hierarchical likelihood in frailty modelsAmorim, William Nilson de 12 February 2015 (has links)
Os métodos de estimação para modelos de fragilidade vêm sendo bastante discutidos na literatura estatística devido a sua grande utilização em estudos de Análise de Sobrevivência. Vários métodos de estimação de parâmetros dos modelos foram desenvolvidos: procedimentos de estimação baseados no algoritmo EM, cadeias de Markov de Monte Carlo, processos de estimação usando verossimilhança parcial, verossimilhança penalizada, quasi-verossimilhança, entro outros. Uma alternativa que vem sendo utilizada atualmente é a utilização da verossimilhança hierárquica. O objetivo principal deste trabalho foi estudar as vantagens e desvantagens da verossimilhança hierárquica para a inferência em modelos de fragilidade em relação a verossimilhança penalizada, método atualmente mais utilizado. Nós aplicamos as duas metodologias a um banco de dados real, utilizando os pacotes estatísticos disponíveis no software R, e fizemos um estudo de simulação, visando comparar o viés e o erro quadrático médio das estimativas de cada abordagem. Pelos resultados encontrados, as duas metodologias apresentaram estimativas muito próximas, principalmente para os termos fixos. Do ponto de vista prático, a maior diferença encontrada foi o tempo de execução do algoritmo de estimação, muito maior na abordagem hierárquica. / Estimation procedures for frailty models have been widely discussed in the statistical literature due its widespread use in survival studies. Several estimation methods were developed: procedures based on the EM algorithm, Monte Carlo Markov chains, estimation processes based on parcial likelihood, penalized likelihood and quasi-likelihood etc. An alternative currently used is the hierarchical likelihood. The main objective of this work was to study the hierarchical likelihood advantages and disadvantages for inference in frailty models when compared with the penalized likelihood method, which is the most used one. We applied both approaches to a real data set, using R packages available. Besides, we performed a simulation study in order to compare the methods through out the bias and the mean square error of the estimators. Both methodologies presented very similar estimates, mainly for the fixed effects. In practice, the great difference was the computational cost, much higher in the hierarchical approach.
|
3 |
Seleção de modelos para segmentação de sequências simbólicas usando máxima verossimilhança penalizada / A model selection criterion for the segmentation of symbolic sequences using penalized maximum likelihoodCastro, Bruno Monte de 20 February 2013 (has links)
O problema de segmentação de sequências tem o objetivo de particionar uma sequência ou um conjunto delas em um número finito de segmentos distintos tão homogêneos quanto possível. Neste trabalho consideramos o problema de segmentação de um conjunto de sequências aleatórias, com valores em um alfabeto $\\mathcal$ finito, em um número finito de blocos independentes. Supomos ainda que temos $m$ sequências independentes de tamanho $n$, construídas pela concatenação de $s$ segmentos de comprimento $l^{*}_j$, sendo que cada bloco é obtido a partir da distribuição $\\p _j$ em $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Além disso denotamos os verdadeiros pontos de corte pelo vetor ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, com $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, esses pontos representam a mudança de segmento. Propomos usar o critério da máxima verossimilhança penalizada para inferir simultaneamente o número de pontos de corte e a posição de cada um desses pontos. Também apresentamos um algoritmo para segmentação de sequências e realizamos algumas simulações para mostrar seu funcionamento e sua velocidade de convergência. Nosso principal resultado é a demonstração da consistência forte do estimador dos pontos de corte quando o $m$ tende ao infinito. / The sequence segmentation problem aims to partition a sequence or a set of sequences into a finite number of segments as homogeneous as possible. In this work we consider the problem of segmenting a set of random sequences with values in a finite alphabet $\\mathcal$ into a finite number of independent blocks. We suppose also that we have $m$ independent sequences of length $n$, constructed by the concatenation of $s$ segments of length $l^{*}_j$ and each block is obtained from the distribution $\\p _j$ over $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Besides we denote the real cut points by the vector ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, with $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, these points represent the change of segment. We propose to use a penalized maximum likelihood criterion to infer simultaneously the number of cut points and the position of each one those points. We also present a algorithm to sequence segmentation and we present some simulations to show how it works and its convergence speed. Our principal result is the proof of strong consistency of this estimators when $m$ grows to infinity.
|
4 |
Verossimilhança hierárquica em modelos de fragilidade / Hierarchical likelihood in frailty modelsWilliam Nilson de Amorim 12 February 2015 (has links)
Os métodos de estimação para modelos de fragilidade vêm sendo bastante discutidos na literatura estatística devido a sua grande utilização em estudos de Análise de Sobrevivência. Vários métodos de estimação de parâmetros dos modelos foram desenvolvidos: procedimentos de estimação baseados no algoritmo EM, cadeias de Markov de Monte Carlo, processos de estimação usando verossimilhança parcial, verossimilhança penalizada, quasi-verossimilhança, entro outros. Uma alternativa que vem sendo utilizada atualmente é a utilização da verossimilhança hierárquica. O objetivo principal deste trabalho foi estudar as vantagens e desvantagens da verossimilhança hierárquica para a inferência em modelos de fragilidade em relação a verossimilhança penalizada, método atualmente mais utilizado. Nós aplicamos as duas metodologias a um banco de dados real, utilizando os pacotes estatísticos disponíveis no software R, e fizemos um estudo de simulação, visando comparar o viés e o erro quadrático médio das estimativas de cada abordagem. Pelos resultados encontrados, as duas metodologias apresentaram estimativas muito próximas, principalmente para os termos fixos. Do ponto de vista prático, a maior diferença encontrada foi o tempo de execução do algoritmo de estimação, muito maior na abordagem hierárquica. / Estimation procedures for frailty models have been widely discussed in the statistical literature due its widespread use in survival studies. Several estimation methods were developed: procedures based on the EM algorithm, Monte Carlo Markov chains, estimation processes based on parcial likelihood, penalized likelihood and quasi-likelihood etc. An alternative currently used is the hierarchical likelihood. The main objective of this work was to study the hierarchical likelihood advantages and disadvantages for inference in frailty models when compared with the penalized likelihood method, which is the most used one. We applied both approaches to a real data set, using R packages available. Besides, we performed a simulation study in order to compare the methods through out the bias and the mean square error of the estimators. Both methodologies presented very similar estimates, mainly for the fixed effects. In practice, the great difference was the computational cost, much higher in the hierarchical approach.
|
5 |
Seleção de modelos para segmentação de sequências simbólicas usando máxima verossimilhança penalizada / A model selection criterion for the segmentation of symbolic sequences using penalized maximum likelihoodBruno Monte de Castro 20 February 2013 (has links)
O problema de segmentação de sequências tem o objetivo de particionar uma sequência ou um conjunto delas em um número finito de segmentos distintos tão homogêneos quanto possível. Neste trabalho consideramos o problema de segmentação de um conjunto de sequências aleatórias, com valores em um alfabeto $\\mathcal$ finito, em um número finito de blocos independentes. Supomos ainda que temos $m$ sequências independentes de tamanho $n$, construídas pela concatenação de $s$ segmentos de comprimento $l^{*}_j$, sendo que cada bloco é obtido a partir da distribuição $\\p _j$ em $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Além disso denotamos os verdadeiros pontos de corte pelo vetor ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, com $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, esses pontos representam a mudança de segmento. Propomos usar o critério da máxima verossimilhança penalizada para inferir simultaneamente o número de pontos de corte e a posição de cada um desses pontos. Também apresentamos um algoritmo para segmentação de sequências e realizamos algumas simulações para mostrar seu funcionamento e sua velocidade de convergência. Nosso principal resultado é a demonstração da consistência forte do estimador dos pontos de corte quando o $m$ tende ao infinito. / The sequence segmentation problem aims to partition a sequence or a set of sequences into a finite number of segments as homogeneous as possible. In this work we consider the problem of segmenting a set of random sequences with values in a finite alphabet $\\mathcal$ into a finite number of independent blocks. We suppose also that we have $m$ independent sequences of length $n$, constructed by the concatenation of $s$ segments of length $l^{*}_j$ and each block is obtained from the distribution $\\p _j$ over $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Besides we denote the real cut points by the vector ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, with $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, these points represent the change of segment. We propose to use a penalized maximum likelihood criterion to infer simultaneously the number of cut points and the position of each one those points. We also present a algorithm to sequence segmentation and we present some simulations to show how it works and its convergence speed. Our principal result is the proof of strong consistency of this estimators when $m$ grows to infinity.
|
6 |
Seleção de covariáveis para modelos de sobrevivência via verossimilhança penalizada / Variable selection for survival models based on penalized likelihoodJony Arrais Pinto Junior 18 February 2009 (has links)
A seleção de variáveis é uma importante fase para a construção de um modelo parcimonioso. Entretanto, as técnicas mais populares de seleção de variáveis, como, por exemplo, a seleção do melhor subconjunto de variáveis e o método stepwise, ignoram erros estocásticos inerentes à fase de seleção das variáveis. Neste trabalho, foram estudados procedimentos alternativos aos métodos mais populares para o modelo de riscos proporcionais de Cox e o modelo de Cox com fragilidade gama. Os métodos alternativos são baseados em verossimilhançaa penalizada e diferem dos métodos usuais de seleção de variáveis, pois têm como objetivo excluir do modelo variáveis não significantes estimando seus coeficientes como zero. O estimador resultante possui propriedades desejáveis com escolhas apropriadas de funções de penalidade e do parâmetro de suavização. A avaliação desses métodos foi realizada por meio de simulação e uma aplicação a um conjunto de dados reais foi considerada. / Variable selection is an important step when setting a parsimonious model. However, the most popular variable selection techniques, such as the best subset variable selection and the stepwise method, do not take into account inherent stochastic errors in the variable selection step. This work presents a study of alternative procedures to more popular methods for the Cox proportional hazards model and the frailty model. The alternative methods are based on penalized likelihood and differ from the usual variable selection methods, since their objective is to exclude from the model non significant variables, estimating their coefficient as zero. The resulting estimator has nice properties with appropriate choices of penalty functions and the tuning parameter. The assessment of these methods was studied through simulations, and an application to a real data set was considered.
|
7 |
Semi-parametric generalized log-gamma regression models / Modelos de regressão semiparamétricos com erros distribuídos log-gamma generalizadaDelgado, Carlos Alberto Cardozo 14 December 2017 (has links)
The central objective of this work is to develop statistical tools for semi-parametric regression models with generalized log-gamma errors under the presence of censored and uncensored observations. The estimates of the parameters are obtained through the multivariate version of Newton-Raphson algorithm and an adequate combination of Fisher Scoring and Backffitting algorithms. Through analytical tools and using simulations the properties of the penalized maximum likelihood estimators are studied. Some diagnostic techniques such as quantile and deviance-type residuals as well as local influence measures are derived. The methodologies are implemented in the statistical computational environment R. The package sglg is developed. Finally, we give some applications of the models to real data. / O objetivo central do trabalho é proporcionar ferramentas estatísticas para modelos de regressão semiparamétricos quando os erros seguem distribução log-gamma generalizada na presença de observações censuradas ou não censuradas. A estimação paramétrica e não paramétrica são realizadas através dos procedimentos Newton - Raphson, escore de Fisher e Backfitting (Gauss - Seidel). As propriedades assintóticas dos estimadores de máxima verossimilhança penalizada são estudadas em forma analítica, bem como através de simulações. Alguns procedimentos de diagnóstico são desenvolvidos, tais como resíduos tipo componente do desvio e resíduo quantílico, bem como medidas de influ\\^encia local sob alguns esquemas usuais de perturbação. Todos procedimentos do presente trabalho são implementados no ambiente computacional R, o pacote sglg é desenvolvido, assim como algumas aplicações a dados reais são apresentadas.
|
8 |
Semi-parametric generalized log-gamma regression models / Modelos de regressão semiparamétricos com erros distribuídos log-gamma generalizadaCarlos Alberto Cardozo Delgado 14 December 2017 (has links)
The central objective of this work is to develop statistical tools for semi-parametric regression models with generalized log-gamma errors under the presence of censored and uncensored observations. The estimates of the parameters are obtained through the multivariate version of Newton-Raphson algorithm and an adequate combination of Fisher Scoring and Backffitting algorithms. Through analytical tools and using simulations the properties of the penalized maximum likelihood estimators are studied. Some diagnostic techniques such as quantile and deviance-type residuals as well as local influence measures are derived. The methodologies are implemented in the statistical computational environment R. The package sglg is developed. Finally, we give some applications of the models to real data. / O objetivo central do trabalho é proporcionar ferramentas estatísticas para modelos de regressão semiparamétricos quando os erros seguem distribução log-gamma generalizada na presença de observações censuradas ou não censuradas. A estimação paramétrica e não paramétrica são realizadas através dos procedimentos Newton - Raphson, escore de Fisher e Backfitting (Gauss - Seidel). As propriedades assintóticas dos estimadores de máxima verossimilhança penalizada são estudadas em forma analítica, bem como através de simulações. Alguns procedimentos de diagnóstico são desenvolvidos, tais como resíduos tipo componente do desvio e resíduo quantílico, bem como medidas de influ\\^encia local sob alguns esquemas usuais de perturbação. Todos procedimentos do presente trabalho são implementados no ambiente computacional R, o pacote sglg é desenvolvido, assim como algumas aplicações a dados reais são apresentadas.
|
9 |
Some extensions in measurement error models / Algumas extensões em modelos com erros de mediçãoTomaya, Lorena Yanet Cáceres 14 December 2018 (has links)
In this dissertation, we approach three different contributions in measurement error model (MEM). Initially, we carry out maximum penalized likelihood inference in MEMs under the normality assumption. The methodology is based on the method proposed by Firth (1993), which can be used to improve some asymptotic properties of the maximum likelihood estimators. In the second contribution, we develop two new estimation methods based on generalized fiducial inference for the precision parameters and the variability product under the Grubbs model considering the two-instrument case. One method is based on a fiducial generalized pivotal quantity and the other one is built on the method of the generalized fiducial distribution. Comparisons with two existing approaches are reported. Finally, we propose to study inference in a heteroscedastic MEM with known error variances. Instead of the normal distribution for the random components, we develop a model that assumes a skew-t distribution for the true covariate and a centered Students t distribution for the error terms. The proposed model enables to accommodate skewness and heavy-tailedness in the data, while the degrees of freedom of the distributions can be different. We use the maximum likelihood method to estimate the model parameters and compute them via an EM-type algorithm. All proposed methodologies are assessed numerically through simulation studies and illustrated with real datasets extracted from the literature. / Neste trabalho abordamos três contribuições diferentes em modelos com erros de medição (MEM). Inicialmente estudamos inferência pelo método de máxima verossimilhança penalizada em MEM sob a suposição de normalidade. A metodologia baseia-se no método proposto por Firth (1993), o qual pode ser usado para melhorar algumas propriedades assintóticas de os estimadores de máxima verossimilhança. Em seguida, propomos construir dois novos métodos de estimação baseados na inferência fiducial generalizada para os parâmetros de precisão e a variabilidade produto no modelo de Grubbs para o caso de dois instrumentos. O primeiro método é baseado em uma quantidade pivotal generalizada fiducial e o outro é baseado no método da distribuição fiducial generalizada. Comparações com duas abordagens existentes são reportadas. Finalmente, propomos estudar inferência em um MEM heterocedástico em que as variâncias dos erros são consideradas conhecidas. Nós desenvolvemos um modelo que assume uma distribuição t-assimétrica para a covariável verdadeira e uma distribuição t de Student centrada para os termos dos erros. O modelo proposto permite acomodar assimetria e cauda pesada nos dados, enquanto os graus de liberdade das distribuições podem ser diferentes. Usamos o método de máxima verossimilhança para estimar os parâmetros do modelo e calculá-los através de um algoritmo tipo EM. Todas as metodologias propostas são avaliadas numericamente em estudos de simulação e são ilustradas com conjuntos de dados reais extraídos da literatura
|
10 |
Análise de diagnóstico em modelos semiparamétricos normais / Diagnostic analysis in semiparametric normal modelsNoda, Gleyce Rocha 18 April 2013 (has links)
Nesta dissertação apresentamos métodos de diagnóstico em modelos semiparamétricos sob erros normais, em especial os modelos semiparamétricos com uma variável explicativa não paramétrica, conhecidos como modelos lineares parciais. São utilizados splines cúbicos para o ajuste da variável resposta e são aplicadas funções de verossimilhança penalizadas para a obtenção dos estimadores de máxima verossimilhança com os respectivos erros padrão aproximados. São derivadas também as propriedades da matriz hat para esse tipo de modelo, com o objetivo de utilizá-la como ferramenta na análise de diagnóstico. Gráficos normais de probabilidade com envelope gerado também foram adaptados para avaliar a adequabilidade do modelo. Finalmente, são apresentados dois exemplos ilustrativos em que os ajustes são comparados com modelos lineares normais usuais, tanto no contexto do modelo aditivo normal simples como no contexto do modelo linear parcial. / In this master dissertation we present diagnostic methods in semiparametric models under normal errors, specially in semiparametric models with one nonparametric explanatory variable, also known as partial linear model. We use cubic splines for the nonparametric fitting, and penalized likelihood functions are applied for obtaining maximum likelihood estimators with their respective approximate standard errors. The properties of the hat matrix are also derived for this kind of model, aiming to use it as a tool for diagnostic analysis. Normal probability plots with simulated envelope graphs were also adapted to evaluate the model suitability. Finally, two illustrative examples are presented, in which the fits are compared with usual normal linear models, such as simple normal additive and partially linear models.
|
Page generated in 0.0616 seconds