Spelling suggestions: "subject:"splines"" "subject:"bsplines""
1 |
New flexible parametric and semiparametric models for survival analysis / Novos modelos flexíveis paramétricos e semi-paramétricos para análise de sobrevivênciaRamires, Thiago Gentil 20 April 2017 (has links)
In this work was proposed a new distributions, called log-sinh Cauchy, with has bimodal shapes and can be used as alternative to the mixture models. Based in the proposed distribution, the following models were proposed: Regression model based in the GAMLSS framework; models with cure rate based in the mixture and promotion time models; semiparametric models, modeling the parameters using penalized splies; semiparametric models, using the penalized splines to model the non-linear effects present in the cure rate. For all proposed models, the computational codes were implemented in the R software, with is available along of the document as well as some brief introduction on how to use them. / Nesse trabalho foi proposto uma nova distribuição, denominada de exponentiated log-sinh Cauchy, a qual possui densidades bimodais e pode ser utilizada como alternativa aos modelos de mistura. Com base na nova distribuição, foram propostos: modelos de regressão baseados nos modelos GAMLSS; modelos com fração de cura baseados em modelos de mistura e tempo de promoção; modelo semi-paramétrico modelando os parâmetros com splines penalizados; modelo semi-paramétrico com fração de cura utilizando splines para modelar efeitos não lineares na proporção de curados. Para todos os modelos propostos, toda parte computacional foi implementada no software R, sendo disponibilizada ao longo do documento assim como breve descrições de uso.
|
2 |
Adaptive Bayesian P-splines models for fitting time-activity curves and estimating associated clinical parameters in Positron Emission Tomography and Pharmacokinetic studyJullion, Astrid 01 July 2008 (has links)
In clinical experiments, the evolution of a product concentration in tissue over time is often under study. Different products and tissues may be considered. For instance, one could analyse the evolution of drug concentration in plasma over time, by performing successive blood sampling from the subjects participating to the clinical study. One could also observe the evolution of radioactivity uptakes in different regions of the brain during a PET scan (Positron Emission Tomography). The global objective of this thesis is the modelling of such evolutions, which will be called, generically, pharmacokinetic curves (PK curves).
Some clinical measures of interest are derived from PK curves. For instance, when analysing the evolution of drug concentration in plasma, PK parameters such as the area under the curve (AUC), the maximal concentration (Cmax) and the time at which it occurs (tmax) are usually reported. In a PET study, one could measure Receptor Occupancy (RO) in some regions of the brain, i.e. the percentage of specific receptors to which the drug is bound. Such clinical measures may be badly estimated if the PK curves are noisy. Our objective is to provide statistical tools to get better estimations of the clinical measures of interest from appropriately smoothed PK curves.
Plenty of literature addresses the problem of PK curves fitting using parametric models. It usually relies on a compartmental approach to describe the kinetic of the product under study. The use of parametric models to fit PK curves can lead to problems in some specific cases. Firstly, the estimation procedures rely on algorithms which convergence can be hard to attain with sparse and/or noisy data. Secondly, it may be difficult to choose the adequate underlying compartmental model, especially when a new drug is under study and its kinetic is not well known.
The method that we advocate to fit such PK curves is based on Bayesian Penalized splines (P-splines): it provides good results both in terms of PK curves fitting and clinical measures estimations. It avoids the difficult choice of a compartmental model and is more robust than parametric models to a small sample size or a low signal to noise ratio. Working in a Bayesian context provides several advantages: prior information can be injected, models can easily be generalized and extended to hierarchical settings, and uncertainty for associated clinical parameters are straightforwardly derived from credible intervals obtained by MCMC methods. These are major advantages over traditional frequentist approaches.
|
3 |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar / Unidimensional and bidimensional structures using P-splines in generalized additive mixed models with application in the production of sugarcaneRondinel Mendoza, Natalie Veronika 29 November 2017 (has links)
Os P-splines de Eilers e Marx (1996) são métodos de suavização que é uma combinação de bases B-splines e uma penalização discreta sobre os coeficientes das bases utilizados para suavizar dados normais e não normais em uma ou mais dimensões, no caso de várias dimensões utiliza-se como suavização o produto tensor dos P-splines. Também os P-splines são utilizados como representação de modelos mistos Currie et al. (2006) pela presença de características tais como: efeitos fixos, efeitos aleatórios, correlação espacial ou temporal e utilizados em modelos mais generalizados tais como os modelos mistos lineares generalizados e modelos mistos aditivos generalizados. Neste trabalho apresentou-se toda a abordagem, metodologia e descrição dos P-splines como modelos mistos e como componentes das estruturas suavizadoras de variáveis unidimensionais e bidimensionais dos modelos mistos aditivos generalizados, mostrando essa abordagem e propondo seu uso em uma aplicação no comportamento dos níveis médios da produção de cana-de-açúcar sob a influência das alterações das variáveis climáticas como temperatura e precipitação, que foram medidos ao longo de 10 anos em cada mesorregião do Estado de São Paulo. O motivo de usar essa abordagem como método de suavização é que muitas vezes não é conhecido a tendência dessas covariáveis climáticas mas sabe-se que elas influenciam diretamente sobre a variável resposta. Além de permitir essa abordagem inclusão de efeitos fixos e aleatórios nos modelos a serem propostos, permitirá a inclusão do processo autoregressivo AR(1) como estrutura de correlação nos resíduos. / P-splines of Eilers e Marx (1996) are methods of smoothing that is a combination of B-splines bases and penalty the coefficients of the bases used to smooth normal and non-normal data in one or more dimensions; in the case of several dimensions it is used as smoothing the tensor product of the P-splines. Also the P-splines are used as representation of mixed models Currie et al. (2006) by the presence of characteristics such as: fixed effects, random effects, spatial or temporal correlation and used in more generalized models such as generalized linear mixed models and generalized additive mixed models. In this work the whole approach, methodology and description of the P-splines as mixed models and as components of the smoothing structures of one-dimensional and two-dimensional variables of generalized additive mixed models were presented, showing this approach and proposing its application in the behavior of the average levels of sugarcane production, which is influenced by changes in climatic variables such as temperature and precipitation , which were measured over 10 years in each mesoregion of the state of São Paulo. The reason for using this approach as a smoothing method is that the tendency of these climate covariables is not know for the most part, but is known that they influence directly the response variable, besides allowing this approach to include fixed and random effects in the models to be proposed, will allow the inclusion of the autoregressive process AR(1) as a correlation structure in the residuos.
|
4 |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar / Unidimensional and bidimensional structures using P-splines in generalized additive mixed models with application in the production of sugarcaneNatalie Veronika Rondinel Mendoza 29 November 2017 (has links)
Os P-splines de Eilers e Marx (1996) são métodos de suavização que é uma combinação de bases B-splines e uma penalização discreta sobre os coeficientes das bases utilizados para suavizar dados normais e não normais em uma ou mais dimensões, no caso de várias dimensões utiliza-se como suavização o produto tensor dos P-splines. Também os P-splines são utilizados como representação de modelos mistos Currie et al. (2006) pela presença de características tais como: efeitos fixos, efeitos aleatórios, correlação espacial ou temporal e utilizados em modelos mais generalizados tais como os modelos mistos lineares generalizados e modelos mistos aditivos generalizados. Neste trabalho apresentou-se toda a abordagem, metodologia e descrição dos P-splines como modelos mistos e como componentes das estruturas suavizadoras de variáveis unidimensionais e bidimensionais dos modelos mistos aditivos generalizados, mostrando essa abordagem e propondo seu uso em uma aplicação no comportamento dos níveis médios da produção de cana-de-açúcar sob a influência das alterações das variáveis climáticas como temperatura e precipitação, que foram medidos ao longo de 10 anos em cada mesorregião do Estado de São Paulo. O motivo de usar essa abordagem como método de suavização é que muitas vezes não é conhecido a tendência dessas covariáveis climáticas mas sabe-se que elas influenciam diretamente sobre a variável resposta. Além de permitir essa abordagem inclusão de efeitos fixos e aleatórios nos modelos a serem propostos, permitirá a inclusão do processo autoregressivo AR(1) como estrutura de correlação nos resíduos. / P-splines of Eilers e Marx (1996) are methods of smoothing that is a combination of B-splines bases and penalty the coefficients of the bases used to smooth normal and non-normal data in one or more dimensions; in the case of several dimensions it is used as smoothing the tensor product of the P-splines. Also the P-splines are used as representation of mixed models Currie et al. (2006) by the presence of characteristics such as: fixed effects, random effects, spatial or temporal correlation and used in more generalized models such as generalized linear mixed models and generalized additive mixed models. In this work the whole approach, methodology and description of the P-splines as mixed models and as components of the smoothing structures of one-dimensional and two-dimensional variables of generalized additive mixed models were presented, showing this approach and proposing its application in the behavior of the average levels of sugarcane production, which is influenced by changes in climatic variables such as temperature and precipitation , which were measured over 10 years in each mesoregion of the state of São Paulo. The reason for using this approach as a smoothing method is that the tendency of these climate covariables is not know for the most part, but is known that they influence directly the response variable, besides allowing this approach to include fixed and random effects in the models to be proposed, will allow the inclusion of the autoregressive process AR(1) as a correlation structure in the residuos.
|
5 |
Analysis Using Smoothing Via Penalized Splines as Implemented in LME() in RHowell, John R. 16 February 2007 (has links) (PDF)
Spline smoothers as implemented in common mixed model software provide a familiar framework for estimating semi-parametric and non-parametric models. Following a review of literature on splines and mixed models, details for implementing mixed model splines are presented. The examples use an experiment in the health sciences to demonstrate how to use mixed models to generate the smoothers. The first example takes a simple one-group case, while the second example fits an expanded model using three groups simultaneously. The second example also demonstrates how to fit confidence bands to the three-group model. The examples use mixed model software as implemented in lme() in R. Following the examples a discussion of the method is presented.
|
6 |
Modelos lineares parciais aditivos generalizados com suavização por meio de P-splines / Generalized additive partial linear models with P-splines smoothingHolanda, Amanda Amorim 03 May 2018 (has links)
Neste trabalho apresentamos os modelos lineares parciais generalizados com uma variável explicativa contínua tratada de forma não paramétrica e os modelos lineares parciais aditivos generalizados com no mínimo duas variáveis explicativas contínuas tratadas de tal forma. São utilizados os P-splines para descrever a relação da variável resposta com as variáveis explicativas contínuas. Sendo assim, as funções de verossimilhança penalizadas, as funções escore penalizadas e as matrizes de informação de Fisher penalizadas são desenvolvidas para a obtenção das estimativas de máxima verossimilhança penalizadas por meio da combinação do algoritmo backfitting (Gauss-Seidel) e do processo iterativo escore de Fisher para os dois tipos de modelo. Em seguida, são apresentados procedimentos para a estimação do parâmetro de suavização, bem como dos graus de liberdade efetivos. Por fim, com o objetivo de ilustração, os modelos propostos são ajustados à conjuntos de dados reais. / In this work we present the generalized partial linear models with one continuous explanatory variable treated nonparametrically and the generalized additive partial linear models with at least two continuous explanatory variables treated in such a way. The P-splines are used to describe the relationship among the response and the continuous explanatory variables. Then, the penalized likelihood functions, penalized score functions and penalized Fisher information matrices are derived to obtain the penalized maximum likelihood estimators by the combination of the backfitting (Gauss-Seidel) algorithm and the Fisher escoring iterative method for the two types of model. In addition, we present ways to estimate the smoothing parameter as well as the effective degrees of freedom. Finally, for the purpose of illustration, the proposed models are fitted to real data sets.
|
7 |
Modelos lineares parciais aditivos generalizados com suavização por meio de P-splines / Generalized additive partial linear models with P-splines smoothingAmanda Amorim Holanda 03 May 2018 (has links)
Neste trabalho apresentamos os modelos lineares parciais generalizados com uma variável explicativa contínua tratada de forma não paramétrica e os modelos lineares parciais aditivos generalizados com no mínimo duas variáveis explicativas contínuas tratadas de tal forma. São utilizados os P-splines para descrever a relação da variável resposta com as variáveis explicativas contínuas. Sendo assim, as funções de verossimilhança penalizadas, as funções escore penalizadas e as matrizes de informação de Fisher penalizadas são desenvolvidas para a obtenção das estimativas de máxima verossimilhança penalizadas por meio da combinação do algoritmo backfitting (Gauss-Seidel) e do processo iterativo escore de Fisher para os dois tipos de modelo. Em seguida, são apresentados procedimentos para a estimação do parâmetro de suavização, bem como dos graus de liberdade efetivos. Por fim, com o objetivo de ilustração, os modelos propostos são ajustados à conjuntos de dados reais. / In this work we present the generalized partial linear models with one continuous explanatory variable treated nonparametrically and the generalized additive partial linear models with at least two continuous explanatory variables treated in such a way. The P-splines are used to describe the relationship among the response and the continuous explanatory variables. Then, the penalized likelihood functions, penalized score functions and penalized Fisher information matrices are derived to obtain the penalized maximum likelihood estimators by the combination of the backfitting (Gauss-Seidel) algorithm and the Fisher escoring iterative method for the two types of model. In addition, we present ways to estimate the smoothing parameter as well as the effective degrees of freedom. Finally, for the purpose of illustration, the proposed models are fitted to real data sets.
|
8 |
La mortalité différentielle selon le lieu de naissance au Canada : une étude de suivi sur la période 1991-2016Sucharczuk, Vanesa 08 1900 (has links)
Comme plusieurs pays industrialisés, le Canada fait face à un vieillissement de sa population qui est exacerbé par la baisse de la mortalité aux âges adultes et avancés. Pour atténuer les conséquences du vieillissement de la population, le Canada a recours à une immigration internationale qui s’est beaucoup diversifiée quant au lieu de naissance des arrivants depuis quelques décennies. Dans ce contexte, il est intéressant de s’interroger sur le comportement différentiel des immigrants selon leur provenance en comparaison avec les Canadiens de naissance. Notre recherche s’inscrit plus précisément sous la thématique mortalité et elle a pour objectif d’étudier les disparités dans la distribution des décès par âge et par sexe selon la provenance, cette dernière étant comprise d’une double manière, soit selon une perspective géographique, soit selon le niveau de développement du pays de naissance. En utilisant une approche de lissage par P-splines, nous estimons l’âge modal (i.e. le plus commun) au décès et la dispersion des durées de vie au mode pour les divers groupes d’immigrants à l’étude et les natifs. Nos résultats montrent que la mortalité aux grands âges résumée par l’âge modal au décès, M, est plus faible pour l’ensemble des immigrants qu’au sein de la population native. L’écart est plus élevé chez les hommes et relativement faible chez les femmes, tout en étant statistiquement significatif. La répartition des décès selon l’âge des immigrants est plus concentrée autour de son centre que celle des natifs, indiquant une plus grande homogénéité des durées de vie individuelles aux âges avancés. L’âge modal au décès estimé pour chacune des catégories de provenance considérées séparément, soit selon la région géographique, soit selon l’indice de développement humain, présente des différences statistiquement significatives par rapport à la population native, à l’exception des femmes Britanniques et celles de l’Afrique et du Moyen-Orient. De plus, certaines différences significatives en matière d’âge modal au décès sont observées lors de la comparaison des groupes d’immigrants entre eux. Le phénomène de sélection, à la fois dans le pays de provenance et dans celui de destination, est l’explication la plus plausible pour ces différences et elle est discutée dans ce mémoire. / Like many industrialized countries, Canada is facing an aging population that is exacerbated by the decline in mortality in adulthood and advanced ages. To mitigate the consequences of an aging population, Canada has resorted to international immigration, which has greatly diversified in terms of the place of birth of arrivals in recent decades. In this context, it is interesting to study the differential behavior of immigrants according to their origin compared to native-born Canadians.
Our research focuses specifically under the theme of mortality and its objective is to study the disparities in the distribution of deaths by age and sex according to origin, the latter being twofold, i.e., from a geographical perspective, or according to the level of development of the country of birth. Using a P-spline smoothing approach, we estimate the modal (i.e., the most common) age at death and the dispersion of mode lifespans for the various immigrant groups under study and natives.
Our results show that mortality at older ages, summarized by the modal age at death, M, is lower among immigrants than for the native population. The difference is higher for men and relatively small for women, while still being statistically significant. The distribution of deaths by age of immigrants is more concentrated around its center than that of natives, indicating a greater homogeneity of individual lifespans at advanced ages.
The estimated modal age at death for each of the categories of origin considered separately, either by geographic region or by HDI, shows statistically significant differences compared to the native population, with the exception of women from the United Kingdom and from Africa and the Middle East. In addition, some significant differences in the modal age at death are observed when comparing immigrant groups with each other. The phenomenon of selection in both the country of origin and the country of destination is the most plausible explanation for these differences and is discussed in this thesis.
|
9 |
Semi-parametric generalized log-gamma regression models / Modelos de regressão semiparamétricos com erros distribuídos log-gamma generalizadaDelgado, Carlos Alberto Cardozo 14 December 2017 (has links)
The central objective of this work is to develop statistical tools for semi-parametric regression models with generalized log-gamma errors under the presence of censored and uncensored observations. The estimates of the parameters are obtained through the multivariate version of Newton-Raphson algorithm and an adequate combination of Fisher Scoring and Backffitting algorithms. Through analytical tools and using simulations the properties of the penalized maximum likelihood estimators are studied. Some diagnostic techniques such as quantile and deviance-type residuals as well as local influence measures are derived. The methodologies are implemented in the statistical computational environment R. The package sglg is developed. Finally, we give some applications of the models to real data. / O objetivo central do trabalho é proporcionar ferramentas estatísticas para modelos de regressão semiparamétricos quando os erros seguem distribução log-gamma generalizada na presença de observações censuradas ou não censuradas. A estimação paramétrica e não paramétrica são realizadas através dos procedimentos Newton - Raphson, escore de Fisher e Backfitting (Gauss - Seidel). As propriedades assintóticas dos estimadores de máxima verossimilhança penalizada são estudadas em forma analítica, bem como através de simulações. Alguns procedimentos de diagnóstico são desenvolvidos, tais como resíduos tipo componente do desvio e resíduo quantílico, bem como medidas de influ\\^encia local sob alguns esquemas usuais de perturbação. Todos procedimentos do presente trabalho são implementados no ambiente computacional R, o pacote sglg é desenvolvido, assim como algumas aplicações a dados reais são apresentadas.
|
10 |
Semi-parametric generalized log-gamma regression models / Modelos de regressão semiparamétricos com erros distribuídos log-gamma generalizadaCarlos Alberto Cardozo Delgado 14 December 2017 (has links)
The central objective of this work is to develop statistical tools for semi-parametric regression models with generalized log-gamma errors under the presence of censored and uncensored observations. The estimates of the parameters are obtained through the multivariate version of Newton-Raphson algorithm and an adequate combination of Fisher Scoring and Backffitting algorithms. Through analytical tools and using simulations the properties of the penalized maximum likelihood estimators are studied. Some diagnostic techniques such as quantile and deviance-type residuals as well as local influence measures are derived. The methodologies are implemented in the statistical computational environment R. The package sglg is developed. Finally, we give some applications of the models to real data. / O objetivo central do trabalho é proporcionar ferramentas estatísticas para modelos de regressão semiparamétricos quando os erros seguem distribução log-gamma generalizada na presença de observações censuradas ou não censuradas. A estimação paramétrica e não paramétrica são realizadas através dos procedimentos Newton - Raphson, escore de Fisher e Backfitting (Gauss - Seidel). As propriedades assintóticas dos estimadores de máxima verossimilhança penalizada são estudadas em forma analítica, bem como através de simulações. Alguns procedimentos de diagnóstico são desenvolvidos, tais como resíduos tipo componente do desvio e resíduo quantílico, bem como medidas de influ\\^encia local sob alguns esquemas usuais de perturbação. Todos procedimentos do presente trabalho são implementados no ambiente computacional R, o pacote sglg é desenvolvido, assim como algumas aplicações a dados reais são apresentadas.
|
Page generated in 0.0491 seconds