• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 67
  • 67
  • 45
  • 31
  • 18
  • 17
  • 17
  • 17
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Magnetic separation using high-T←c superconductors

Bolt, Livia January 2001 (has links)
No description available.
52

The magnetic properties of superconductors

Lloyd, Sion January 1999 (has links)
No description available.
53

A study of structure-property relationships in layered copper oxides

Hyatt, Neil January 2000 (has links)
No description available.
54

Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technology

Saleh, Paul Matthew January 2000 (has links)
No description available.
55

Phenomenological Theory Of Superconductivity And Low-Energy Electronic Spectra In The High-Tc Cuprates

Banerjee, Sumilan 07 1900 (has links) (PDF)
Condensed matter physics is a rapidly evolving field of research enriched with the synthesis of new materials exhibiting a bewildering variety of phenomena and advances in experimental techniques. Over the years, discoveries and innovations in electronic systems have emphasized the crucial role played by correlations among electrons behind many of the observed unusual properties and have posed serious challenges to the physics community by exposing the lack of well-controlled theoretical methods to study the class of materials known as strongly correlated electronic systems. In these systems, known theoretical techniques typically fail to capture the essential features of the many-body ground state and finite temperature properties of the systems as typical electronic interaction energies are of order of or larger than the kinetic energies. The study of strongly correlated electronic systems went through a revolution in the 1980s and 1990s after the discovery of superconductivity inorganic compounds, in heavy fermion systems and ultimately in copper oxides, referred to as cuprates, by Bednorz and Muller. In particular, the pursuit of understanding the mysterious origin of superconductivity in the cuprates and other associated strange phenomena has fascinated the condensed matter community over last two and half decades leading to most of the important unsolved, and probably interconnected, problems of quantum condensed matter physics such as the metal-insulator transition in low dimensions breakdown of Fermi liquid theory, the origin and behavior of unconventional superconductivity, quantum critical points, electronic in homogeneities and localization in interacting systems. This thesis is devoted to the study of some of the aspects of high-temperature superconductivity and associated phenomena in cuprates. In what follows, I give an overview of the organization of the thesis in to different chapters and their contents. For setting up the stage, in Chapter 1, I give a brief account of some of the remarkable phenomena and properties observed in strongly correlated electronic matter and their salient features, that continue to draw much attention and excitement in current times. The peculiarity of the state of affairs in these systems is emphasized and motivated in the background of the paradigmatic Landau Fermi liquid theory and Hubbard model, the minimal model that is expected to capture the quintessence of electronic strong correlation. In Chapter 2, starting with a brief historical account of the discovery of superconductivity in cuprates, the crystal structure of these materials, their chemical realities and basic electronic details are reviewed. This is followed by a survey of the phase diagram of cuprates, doped with, say, x number of holes per copper site, and a plethora of experimental findings that constitute the high-c puzzle. Characteristics of various observed phases, such as the superconducting, pseudo gap and strange metal phases, are discussed on the basis off acts accumulated through various experimental probes, e.g. nuclear magnetic resonance(NMR), neutron scattering, specific heat, transport and optical conductivity measurements as well as photo emission, tunnelling and Raman spectroscopies. As elucidated, these experiments point toward the need for an unconventional mechanism of superconductivity in cuprates and, more so, for the description of the rather abnormal high-temperature normal state that is realized above the superconducting transition temperature c. Keeping in mind the fact that there is no consensus even about the minimal microscopic electronic model, I review two models, namely the three band model and the t - J model; various approximate treatments of these models have dominated the theoretical developments in this field. A large number of theoretical pictures have been proposed based on different microscopic, semi-microscopic and phenomenological approaches in the past two decades for explaining the genesis of the observed strange phenomena in high-c cuprates. I include brief discussions on only a few of them while citing relevant references. As mentioned above, a variety of approximate microscopic theories, based on both strong and weak coupling approaches, as well as numerical techniques have been tried to understand the cuprate phase diagram and capture the aspects of strong correlations in-built in Hubbard and t -J models. On the other hand, in conventional superconductors and, in general, for the study of phase transitions, phenomenological Ginzburg-Landau(GL) functionals written down from very general symmetry grounds have provided useful description for a variety of systems. Specially, Ginzburg-Landau theory has been proven to be complementary to the BCS theory for attacking a plethora of situations in superconductors, e.g., in homogeneities, structures of an isolated vortex and the vortex lattice etc. The GL functional has found wide applicability for the study of vortex matter in high-c superconductors as well. Inspired by the success of this type of phenomenological route, we propose and develop in Chapter 3 an approach, analogous in spirit to that of Ginzburg and Landau, for the superconducting and pseudogap phases of cuprates. We encompass a large number of well known phenomenologies of cuprate superconductivity in the form of a low-energy effective lattice functional of complex spin-singlet pair amplitudes with magnitude Δm and phase m, i.e. m =Δm exp(i m), that resides on the Cu-Cubonds(indexed by m)of the CuO2 planes of cuprates. The functional respects general symmetry requirements, e.g. the -wave symmetry of the superconducting order parameter as found in experiments. The assumptions and the specific physical picture behind such an approach as well as the key empirical inputs that go into it are discussed in this chapter. We calculate the superconducting transition temperature c and the average magnitude of the local pair amplitude, Δ= (Δm), using single-site mean-field theory for the model. We show that this approximation leads to general features of the doping-temperature(x - T )phase diagram in agreement with experiment. In particular, we find a phase coherent superconducting state with d-wave symmetry below a parabolic Tc (x) dome and a phase incoherent state with a perceptible local gap that persists up to a temperature around which can be thought of as a measure of the pseudogap temperature scale T* . Further, effects of thermal fluctuations beyond the mean-field level are captured via Monte Carlo(MC) simulations of the model for a finite two-dimensional (2D) lattice. We exhibit results for Tc obtained from MC simulations as well as that estimated in a cluster mean field approximation. Based on our picture we remark on contrasting scenarios proposed for the doping dependence of the pseudogap temperature. Chapter 4 describes fluctuation phenomena related to pairing degrees of freedom and manifestations of these effects in various quantities of interest, e.g. superfluid density, specific heat etc., at finite temperature. Fluctuation effects have been studied in detail in superconductors over the years and pursued mainly using either the conventional GL functional or the BCS-framework at a microscopic level. However, the picture, in which the pseudogap phase is viewed as one consisting of bond-pairs with a d-wave symmetry correlation length growing as T approaches Tc, implies fluctuation phenomena of quite a different kind, as we discuss here. The contribution of the bond-pair degrees of freedom to thermal properties is obtained here from the lattice free-energy functional using MC simulation, as mentioned in the preceding paragraph. The results for the superfluid density or superfluid stiffness ps, a quantity measured e.g. via the penetration depth, are discussed. As shown, its doping and temperature dependence compare well with experimental results. In this chapter, I also report the calculation of the fluctuation specific heat Cv(T) and find that there are two peaks in its temperature dependence, a sharp one connected with Tc (ordering of the phase of m)and a relatively broad one(hump)connected to T* (rapid growth of the magnitude of Δm). The former is specially sensitive to the presence of a magnetic field, as we find in agreement with experiment. Vortices are relevant excitations in a superconductor and, in particular, in 2D orquasi-2D systems vortices influence the finite temperature properties in a major way. The results for the temperature dependence of vortex density obtained in the MC simulation of the GL-like model are also mentioned in Chapter 4. I report an estimate of the correlation length as well. These results might have relevance for the large Nernst signal observed over a broad temperature range above c in cuprates, as pointed out there. Properties of an isolated vortex and collective effects arising due to interaction between vortices are of much significance for understanding mixed state of type-II superconductors and thus of cuprates. The superconducting order is destroyed in the core region around the centre of a vortex and the vortex core carries signatures of the normal state in a temperature regime where it is generally unattainable due to occurrence of superconductivity. As mentioned in Chapter 5, vortex properties(e.g. electronic excitation spectrum at the vortex core) in BCS superconductors have been explored theoretically, at a microscopic level through the Bogoliubov-deGennes(BdG) theory as well as using the Ginzburg-Landau functional. However, properties of vortices in cuprate superconductors have been found to be much more unusual than could possibly be captured by straightforward extensions of BCS theory to a -wave symmetry case. Chapter 5 briefly reviews the experimental findings on vortices in the superconducting state of cuprates, mainly as probed by Scanning Tunnelling Microscopy(STM) as well as from other probes such as NMR, neutron scattering, SR etc. I discuss some of the consequences of our GL-like functional regarding vortex properties, namely that of the vortex core and the region around it. We use our model to find Δm and m at different sites m for a 2π vortex whose core is at the midpoint of a square plaquette of Cu lattice sites. The vortex is found to change character from being primarily a phase or Josephson vortex for small x to a more BCS-like or Abrikosov vortex with a large diminution in the magnitude Δm as one approaches the vortex core, for large . Here I do not make any direct comparison with experimental data but discuss implications of our results in the background of existing experimental facts. Unravelling the mysteries of high-Tc cuprates should necessarily involve the understanding of electronic excitations over a broad regime of doping and temperature encompassing the pseudo gap, superconducting and strange metal states. A phenomenological theory which aims to describe the pseudo gap phase as one consisting of preformed bond-pairs, is required to include both unpaired electrons and Cooper pairs of the same electrons coexisting and necessarily coupled with each other. In our Ginzburg Landau approach only the latter are explicit, while the former are integrated out. However, effects connected with the pair degrees of freedom are often investigated via their coupling to electrons, one very prominent examples being Angle Resolved Photoemmision Spectroscopy(ARPES),in which the momentum and energy spectrum of electrons ejected from the metal impinged by photons is investigated. In Chapter 6, we develop a unified theory of electronic excitations in the superconducting and pseudo gap phases using a model of electrons quantum mechanically coupled to spatially and temporally fluctuating Cooper pairs(the nearest neighbour singlet bond pairs). We discuss the theory and a number of its predictions which seem to be in good agreement with high resolution ARPES measurements, which have uncovered a number of unusual spectral properties of electrons near the Fermi energy with definite in-plane momenta. We show here that the spectral function of electrons with momentum ranging over the putative Fermi surface(recovered at high temperatures above the pseudogap temperature scale) is strongly affected by their coupling to Cooper pairs. On approaching Tc i.e. the temperature at which the Cooper pair phase stiffness becomes nonzero, the inevitable coupling of electrons with long-wavelength(d-wave symmetry) phase fluctuations leads to the observed characteristic low-energy behavior as reported in Chapter 6. Collective d-wave symmetry superconducting correlations develop among the pairs with a characteristic correlation length ξ which diverges on approaching the continuous transition temperature Tc from above. These correlations have a generic form for distances much larger than the lattice spacing. As we show here, the effect of these correlations on the electrons leads, for example, to a pseudogap in electronic density of states for T > T c persisting till T* , temperature-dependent Fermi arcs i.e. regions on the Fermi surface where the quasiparticle spectral density is non zero for a zero energy excitation and to the filling of the antinodal pseudogap in the manner observed. Further, the observed long-range order(LRO) below c leads to a sharp antinodal spectral feature related to the non zero superfluid density, and thermal pair fluctuations cause a deviation(‘bending’) of the inferred ‘gap’ as a function of k from the expected d-wave form (cos kxa - cos kya). The bending, being of thermal origin, decreases with decreasing temperature, in agreement with recent ARPES measurements. I conclude in Chapter 7 by mentioning some natural directions in which the functional and the approach used here could be taken forward. The phenomenological theory proposed and developed in this thesis reconciles and ties together a range of cuprate superconductivity phenomena qualitatively and confronts them quantitatively with experiment. The results, and their agreement with a large body of experimental findings, strongly support the mechanism based on nearest neighbor Cooper pairs, and emergence of long-range -wave symmetry order as a collective effect arising from short range interaction between these pairs. This probably points to the way in which high-c superconductivity will be understood.
56

Synthèse par épitaxie et propriétés magnétiques des semiconducteurs ferromagnétiques dilués à base de GeMn

Le thi, Giang 13 June 2012 (has links)
Le développement des dispositifs issus de l'électronique de spin nécessite de nouveaux matériaux qui permettent d'injecter de manière efficace le courant polarisé en spin dans des semiconducteurs. Parmi de nombreux matériaux utilisés comme injecteurs de spin, les semiconducteurs ferromagnétiques dilués (DMS), obtenus en dopant des semiconducteurs avec des impuretés magnétiques tels que Mn ou Co, sont considérés comme des candidats potentiels pour l'injection de spin. Ces matériaux dopés deviennent ferromagnétiques tout en conservant leurs propriétés semiconductrices. Par conséquent, ils présentent une similarité d'impédance électrique par rapport aux substrats semiconducteurs, ce qui rend efficace l'injection de courant polarisé en spin dans ces derniers. Dans ce contexte, l'objectif principal de cette thèse consiste à étudier la cinétique de croissance des semiconducteurs ferromagnétiques dilués GeMn. Nous cherchons à déterminer les paramètres clés de la croissance des couches de GeMn, à savoir la température du substrat, et la concentration en Mn. Pour la fabrication de dispositifs électroniques fonctionnels, le challenge crucial est d'obtenir des DMS ayant une température de Curie (TC) bien supérieure à la température ambiante. Nous nous sommes donc concentrés sur la cinétique de formation de la phase nanocolonnaire GeMn possédant une TC au-delà de 400 K. / The development of active spintronic devices requires new materials, which enable to efficiently inject spin-polarized currents into non-magnetic semiconductors. Among numerous materials that can be used as spin injectors, diluted magnetic semiconductors (DMS), obtained by doping standard semiconductors with magnetic impurities, such as Mn or Co, have emerged as potential candidates for spin injection. The materials become ferromagnetic while conserving their semiconducting properties. They exhibit therefore natural impedance match to host semiconductors and are expected to efficiently inject spin-polarized currents into semiconductors. In this context, the main objectives of this thesis work consist in studying the growth kinetics of GeMn-based diluted magnetic semiconductors. We aim at determining the main growth parameters, such as the substrate temperature and the Mn concentration, that govern the growth process of GeMn layers. Since for device applications it is crucial to obtain DMS exhibiting a Curie temperature (TC) well above room temperature, we have focused our attention to the kinetic formation of the GeMn nanocolumn phase, which exhibits a Curie temperature higher than 400 K.
57

The fabrication of a high temperature superconducting magnet and critical current characterisation of the component Bi₂Sr₂Ca₂Cu₃Oₓ tapes and filaments in high magnetic fields

Sneary, Adrian Bernard January 2000 (has links)
The transport critical current density (J(_c)) of a 37 filament Bi-2223/Ag tape has been measured as a function of field and temperature from 4.2 K up to 90 K. Data have been obtained over a large current range from 10 mA up to 100 A and in fields up to 23 T with the tape in 3 orientations with respect to field. These comprehensive data have been used to test the predictions of the flux creep and weak link models used to explain J(_c) in Bi-2223 tapes. The J(_c)(B,T) dependence of optimised Bi-2223 tapes has been calculated using a curved film model. The model assumes perfect grain connectivity and that the local superconducting properties are equivalent to those in the best reported thin films. A comparison between the calculations and measured J(_c)(B,T) dependencies suggest that in high fields at 20 K, J(_c) in presently available industrially processed tapes is only a factor of 8 below the performance of ideal fully optimised tapes. Transport measurements have been made on Bi-2223 single filaments extracted from an alloy sheathed multifilamentary tape in liquid nitrogen at 77 K in fields up to 300 mT with the field aligned parallel and perpendicular to the a-b planes. Further Jc(B,T) data have been taken in a variable temperature insert at temperatures between 60 to 90 K in fields up to 15 T. In a study of the electric field-current density {E-J) characteristics of the c-axis orientated data at 77 K, negative curvature is observed in traces below 280 mT. However, the 280 mT trace exhibits both positive and negative curvature in different current regimes in contrast to the predictions of standard theory. A laboratory scale Bi-2223 superconducting magnet producing a maximum field of 1.29 T at 4.2 K has been designed and fabricated. The magnet comprises 6 resin impregnated double wound pancakes with a 40 mm bore fabricated via the react and wind route. Critical current density measurements have been made as a function of magnetic field, angle and strain at 4.2 K and 77 K on short samples of the constituent tape. The E-J characteristics of all component coils have been measured and a comparison with short sample data shows that minimal additional damage occurred beyond that produced by the bending strain on the tape and the long length variation in J(_c). Sufficient detail is provided for the non-specialist to assess the potential use of brittle superconducting tapes for magnet technology and construct a laboratory scale magnet.
58

Étude de la phase pseudogap de supraconducteurs Haut-Tc Nd-LSCO par analyse optique de l'anisotropie de la génération de seconde harmonique

Daneau, Simon 04 1900 (has links)
No description available.
59

Growth of superconducting and ferroelectric heterostructures / Crescimento de heteroestruturas supercondutoras e ferroelétricas

Oliveira, Felipe Ferraz Morgado de 20 December 2018 (has links)
The phase diagram of complex oxides is very diverse due to the strong interaction between electrons in the electronic structure. It is possible to probe those interactions by changing electrostatically the carrier density, the main concept behind the Field-Effect Transistors (FET) which is the building blocks of nanoelectronics devices. In the case of high-TC superconductor copper oxides, it is possible to use this concept to switch between superconducting and insulator phases, for example using an adjacent liquid electrolyte layer to inject charges in a superconducting film. With that in mind, the objective of this work was to establish protocols to grow superconductor and ferroelectric films for future fabrication of superconducting FET devices. We optimized the deposition conditions for the growth of a single layer of superconductor YBa2Cu3O7–x and the ferroelectric barium titanate on SrTiO3 substrates by pulsed laser deposition (PLD). Several techniques were employed to study the properties of the thin films, such as X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy, resistance vs temperature and ferroelectric hysteresis. Regarding the superconductors thin films, we observed several relations between the superconducting features and the growth parameters. For instance, lower growth temperatures contribute to the nucleation of a-axis oriented grains meanwhile higher growth temperature tends to be c-axis oriented. Regarding the frequency of the laser (proportional to the growth rate), it seems that lower frequency is related to higher surface roughness and the presence of non-superconducting contributions. As it increases, the roughness decrease and the sample presents a sharper superconducting transition. Finally, we also did the first steps towards the field effect device by growing a heterostructure thin film consisting of a superconductor and ferroelectric material. The sample grew c-axis oriented on strontium titanate substrate, though with a high value of surface roughness. / O diagrama de fase dos óxidos complexos é muito diverso devido à forte interação entre os elétrons na estrutura eletrônica. É possível sondar essas interações alterando eletrostaticamente a densidade da portadores, o principal conceito por trás dos transistores de efeito de campo (FET), que é o elemento fundamental dos dispositivos nanoeletrônicos. No caso de supercondutores de alta temperatura a base de óxidos de cobre, é possível usar este conceito para alternar entre fases supercondutoras e isolantes, por exemplo utilizando uma camada adjacente de eletrólito líquido para injetar cargas no filme supercondutor. Com isso em mente, o objetivo desse trabalho foi estabelecer protocolos para crescer filmes supercondutores e ferroelétricos para fabricações futuras de dipositivos FET supercodutores. Nós optimizamos as condições de deposição para o crescimento de uma única camada do supercondutor YBa2Cu3O7–x e do ferroeléctrico titanato de bário em substratos SrTiO3 por deposição de laser pulsado (PLD). Diversas técnicas foram empregadas para estudar as propriedades dos filmes finos, como difração de raios-X, microscopia de força atômica, espectroscopia de fotoelétrons de raios-X, resistência vs temperatura e histerese ferroelétrica. Em relação aos filmes finos supercondutores, observamos várias relações das propriedades supercondutoras com os parâmetros de crescimento. Por exemplo, temperaturas de crescimento mais baixas contribuem para a nucleação de grãos orientados no eixo a, enquanto a temperatura de crescimento mais alta tende a ser orientada para o eixo c. Em relação à frequência do laser (proporcional à taxa de crescimento), há um indício que valores menores de frequência está relacionada à maior rugosidade superficial e à presença de contribuições não supercondutoras. À medida que aumenta a frequência, a rugosidade diminui e a amostra apresenta uma transição supercondutora mais nítida. Por fim, também fizemos os primeiros passos em direção ao dispositivo de efeito de campo, desenvolvendo um filme fino de heteroestrutura com um material supercondutor e ferroelétrico. A amostra cresceu orientada no eixo c em substrato de titanato de estrôncio com alto valor de rugosidade superficial.
60

The growth and infrared response of YBa←2Cu←3O←7←-←#delta# thin films

Farnan, Gareth A. January 2000 (has links)
No description available.

Page generated in 0.0589 seconds