• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 42
  • 24
  • 15
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 263
  • 67
  • 55
  • 38
  • 36
  • 32
  • 31
  • 28
  • 27
  • 23
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Validation of high density electrode arrays for cochlear implants: a computational and structural approach

Falcone, Jessica Dominique 06 April 2011 (has links)
Creating high resolution, or high-density, electrode arrays may be the key for improving cochlear implant users' speech perception in noise, comprehension of lexical languages, and music appreciation. Contemporary electrode arrays use multipolar stimulation techniques such as current steering (shifting the spread of neural excitation in between two physical electrodes) and current focusing (narrowing of the neural spread of excitation) to increase resolution and more specifically target the neural population. Another approach to increasing resolution incorporates microelectromechanical systems (MEMS) fabrication to create a thin film microelectrode (TFM) array with a series of high density electrodes. Validating the benefits of high density electrode arrays requires a systems-level approach. This hypothesis will be tested computationally via cochlea and auditory nerve simulations, and in vitro studies will provide structural proof-of-concept. By employing Rattay's activating function and entering it into Litvak's neural probability model, a first order estimation model was obtained of the auditory nerve's response to electrical stimulation. Two different stimulation scenarios were evaluated: current steering vs. a high density electrode and current focusing of contemporary electrodes vs. current focusing of high density electrodes. The results revealed that a high density electrode is more localized than current steering and requires less current. A second order estimation model was also created COMSOL, which provided the resulting potential and current flow when the electrodes were electrically stimulated. The structural tests were conducted to provide a proof of concept for the TFM arrays' ability to contour to the shape of the cochlea. The TFM arrays were integrated with a standard insertion platform (IP). In vitro tests were performed on human cadaver cochleae using the TFM/IP devices. Fluoroscopic images recorded the insertion, and post analysis 3D CT scans and histology were conducted on the specimens. Only three of the ten implanted TFM/IPs suffered severe delamination. This statistic for scala vestibuli excursion is not an outlier when compared to previous data recorded for contemporary cochlear electrode arrays.
132

Ground displacements and pipe response during pulled-in-place pipe installation.

Cholewa, Johnathan 02 April 2009 (has links)
Polymer pipes, typically high density polyethylene (HDPE), can be pulled-into-place, avoiding traditional cut-and-cover construction, using pipe bursting and horizontal directional drilling (HDD) pipe installation techniques. Of particular interest, are the ground displacements, induced by cavity expansion, associated with these techniques and the strains that develop in existing pipes in response to these displacements. Further, the axial stress-strain response of the new HDPE pipe during and after the cyclic pulling force history required to pull the pipe into place is of interest. Surface displacements and strains in an adjacent polyvinyl chloride (PVC) pipe induced by static pipe bursting were measured during the replacement of a new unreinforced concrete pipe. For the pipe bursting geometry tested, the maximum vertical surface displacement measured at the ground surface was 6 mm, while the distribution of vertical surface displacements extended no more than 2 m on either side of the centreline. The maximum longitudinal strain measured in the PVC pipe was less than 0.1% and its vertical diameter decreased by only 0.5%, suggesting that pipe bursting did not jeopardize the long-term performance of the water pipe tested. In addition, results from identical stress relaxation and creep tests performed on whole pipe samples and coupons trimmed from a pipe wall were compared, and these demonstrated that the coupons exhibited higher modulus than the pipe samples. Therefore, isolated pipe samples, as opposed to coupons, were tested to quantify the stress-strain response of HDPE pipe during the simulated installation, strain recovery, and axial restraint stages of HDD. Axial strains were found to progressively accumulate when an HDPE pipe sample was subjected to the cyclic stress history used to simulate an HDD installation. It was shown that existing linear and nonlinear viscoelastic models can serve as predictive design tools for estimating the cyclic strain history of HDPE pipe during installation. For the specific conditions examined, the tensile axial stresses redeveloped in the pipe samples, once restrained, were not large enough to lead to long-term stress conditions conducive to slow crack growth even when the short-term performance limits were exceeded by a factor of 1.5. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-04-01 18:19:24.434
133

Efficient data acquisition, transmission and post-processing for quality spiral Magnetic Resonance Imaging

Jutras, Jean-David Unknown Date
No description available.
134

Postprandial lipemia in abdominally obese and non-obese males

Wideman, Laurie January 1993 (has links)
Recent research has shown that the combination of high triglyceride (TG) levels and low high density lipoprotein (HDL) levels, significantly increases the incidence of coronary artery disease (CAD). The incidence of CAD is also increased in abdominally obese individuals. To assess differences in postprandial TG clearance patterns between abdominally obese (AO) and controls (C), fourteen healthy, normolipidemic males (seven controls and seven abdominally obese) completed an oral fat loading test (78 grams of fat). Blood samples were collected every hour for eight hours. Abdominally obese individuals had significantly greater TG values, significantly lower total HDL and HDL2 values and significantly greater area under the TG curve (p = 0.03). Time to reach peak TG and time to reach baseline TG values did not differ between the two groups, even though fewer AO individuals reached baseline within eight hours. The data from the present investigation indicate that increased time to clear TG in AO individuals may be one pathway that increases the incidence of CAD in this group. / School of Physical Education
135

Estudo da modificação de argilas bentoníticas para aplicação em nanocompósitos de polietileno.

BARBOSA, Renata. 26 September 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-09-26T15:00:31Z No. of bitstreams: 1 RENATA BARBOSA - TESE (PPGEP) 2009.pdf: 13292645 bytes, checksum: e1d1eb846f17881cd108a8bad8f924ec (MD5) / Made available in DSpace on 2018-09-26T15:00:31Z (GMT). No. of bitstreams: 1 RENATA BARBOSA - TESE (PPGEP) 2009.pdf: 13292645 bytes, checksum: e1d1eb846f17881cd108a8bad8f924ec (MD5) Previous issue date: 2009-06-19 / Nanocompósitos de PEAD/argila bentonítica modificada e sem modificação foram preparados por meio do processo de intercalação por fusão. Realizou-se, previamente um estudo sistemático com quatro sais quaternários de amônio e em três tipos de argilas bentoníticas. Em seguida, fez-se a escolha de um sal quaternário de amônio e de uma argila bentonítica para dar continuidade ao trabalho. A argila escolhida foi organofilizada usando-se diferentes percentuais de sal quaternário de amônio 100%, 125% e 150% baseados na capacidade de troca de cátions (CTC) da argila. Ficou evidente por difração de raios- X (DRX) que os sais foram incorporados à estrutura da argila confirmando assim sua organofilização. Em princípio, todos os sais poderão ser usados para a organofilização da argila e, consequentemente nos sistemas de nanocompósitos PEAD/argila organofílica. Porém, foi verificado que o tipo de ânion presente pode influenciar a estabilidade térmica do sal quaternário de amônio. Os nanocompósitos foram preparados em uma extrusora de rosca dupla contrarrotacional e, em seguida, corpos de prova foram moldados por injeção. Para a avaliação da inflamabilidade dos sistemas foi utilizado o teste de queima na posição horizontal segundo a norma (UL-94HB) e o método do Calorímetro de Cone. O comportamento térmico dos nanocompósitos foi avaliado por temperatura de deflexão térmica (HDT) e termogravimetria (TG). As técnicas de DRX e microscopia eletrônica de transmissão (MET) foram utilizadas para caracterizar a morfologia e analisar o grau de expansão das argilas preparadas bem como o grau de esfoliação dos nanocompósitos. As propriedades mecânicas de tração e impacto também foram analisadas. Para efeito de comparação, determinadas composições foram extrudadas utilizando-se duas configurações de roscas da extrusora ZSK-30 corrotacional, com objetivos de variar as condições de processo e melhorar as propriedades dos nanocompósitos obtidos. Observou-se que o percentual de sal de amônio e o tipo de compatibilizante polar influenciam nas propriedades finais dos nanocompósitos. / High Density Polyethylene (HDPE) nanocomposites containing unmodified and modified bentonite clay were prepared by melt intercalation technique. Initially, four quaternary ammonium salts and three types of bentonitic clays were studied. Afterwards, one type of salt and one type of clay were chosen for the study. The clay was organophilized using 100,125 and 150wt% of quaternary ammonium salt based on cationic exchange capacity (CEC) of the clay. It was evident from the X-ray diffraction (XRD) that the salts were incorporated into the clay structure confirming its organophilization. In general, all salts may be used for clay organophilization and hence, on HDPE/Organophilic clay nanocomposites. However, it was verified that the type of anion present may influence the thermal stability of the quaternary ammonium salt. The nanocomposites were prepared in a counter-rotating twin screw extruder and the samples were prepared by injection molding. For the evaluation of the flammability, horizontal burn (UL-94HB) and cone calorimeter methods were used. The thermal behavior of the nanocomposites was analyzed by Heat Distortion Temperature (HDT) and Thermogravimetry (TG). XRD and Transmission Electron Microscopy (MET) techniques were used to characterize the morphology and analyze the degree of expansion of the prepared clays, and also the degree of exfoliation of the nanocomposites. Mechanical properties (Tensile and Impact strength) were also analyzed. Some compositions were extruded using two screw configurations of ZSK-30 co-rotacional extruder with the aim of improving the properties of the nanocomposites obtained by varying the processing conditions. It was observed that the percentage of the ammonium salt and the type of polar compatibilizer influence the final properties of the nanocomposites.
136

Caracterização de compósito produzido com diferentes frações de pó de madeira e polietileno de alta densidade

Melo, Jessyka Meierjurgen 15 June 2015 (has links)
Made available in DSpace on 2016-03-15T19:36:55Z (GMT). No. of bitstreams: 1 Jessyka Meierjurgen Melo.pdf: 1463151 bytes, checksum: b96ae4642ea3139b9e867598e3bba7c1 (MD5) Previous issue date: 2015-06-15 / The present work aimed to highlight the study of polymeric composite development to be responsible with the environment and with the growth of the recycling of materials, from the use of high-density polyethylene (HDPE) with eucalyptus wood dust from the manufacturing furniture. The study started from a literature search where were analyzed the factors involving the subject in question, highlighting the concept of polymer, synthetic fibers, wood dust presence, and composites to identify and understand the problem in issue. Mechanical, morphological and rheological tests were done with composites with concentrations of 5, 10 and 20% of wood dust in relation to the polymer matrix in order to characterize and compare the obtained materials. It was noted that during the study samples with wood dust had higher mechanical performance compared to pure HDPE sample. Based on this context, this study was developed to analyze the possibilities ahead so the production of HDPE composite from different wood dust fractions. / O presente trabalho teve como objetivo destacar o estudo de desenvolvimento de compósito polimérico responsável com o meio ambiente e com o crescimento da reciclagem de materiais, a partir da utilização de polietileno de alta densidade (PEAD) com pó de madeira de eucalipto, proveniente da fabricação de móveis. O estudo iniciou a partir de uma pesquisa bibliográfica onde foram analisados os principais fatores que envolvem o tema em questão, destacando o conceito de polímero, das fibras sintéticas, a presença do pó de madeira, seus compósitos a fim de identificar e conhecer o problema em questão. O estudo desenvolveu-se a partir de ensaios mecânicos, morfológico e reológico, dos compósitos com as concentrações de 5, 10 e 20% de madeira em relação à matriz polimérica, a fim de caracterizar e comparar os materiais obtidos. Notou-se que durante os estudos as amostras com pó de madeira apresentaram maior desempenho mecânico comparado a amostra de PEAD puro. Baseado neste contexto, este estudo foi desenvolvido visando assim analisar as possibilidades frente a produção do compósito de PEAD a partir de diferentes concentrações de pó de madeira.
137

Studies of the Interaction of LCAT with Lipoprotein Substrates in HDL Deficient Plasma Systems

Paranjape, Sulabha 08 1900 (has links)
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in HDL deficient plasma systems. Fasting plasma samples were obtained from control and cholesterol fed guinea pigs as well as from a fish eye disease patient and were used to localize the enzyme LCAT among plasma lipoproteins (VLDL, LDL, and HDL). In both guinea pig and fish eye disease patient plasma, the LCAT activity was found in association with the HDL type particles. Cholesterol feeding in guinea pigs altered the properties of lipoprotein substrates for LCAT resulting in some changes, specifically: 1) decreased fractional rate of plasma cholesterol esterification and, 2) lower transfer of free cholesterol (FC) and esterified cholesterol (CE) within the lipoprotein fractions.
138

Combined hydrodynamic and reaction analysis of a bubbling to turbulent Fluidized Bed Reactor

Saayman, Jean January 2013 (has links)
There are many large-scale contacting methods for gas reactions requiring a solid catalyst. The catalytic gas-solid Fluidized Bed Reactor (FBR) is one of the popular methods in industry. In FBRs the bulk of the gas throughput is present as lean bubbles, mostly deprived of solids, bubbling through a solids-rich emulsion phase. The movement of gas into and out of the emulsion often dictates the performance of an FBR. During the past five decades major contributions have been made towards the understanding of FBRs, although numerous gaps still exist, especially at higher bubbling regime velocities. This work follows an integrated approach for the simultaneous measurement of hydrodynamics and reactor performance. Hydrodynamics are measured using fast X-Ray Tomography (XRT), pressure analysis techniques and an optical fibre probe. Reactor performance is measured by utilizing the ozone decomposition reaction. Performance is quantified using a basic two-phase reactor model with an apparent overall interphase mass transfer (K0) parameter. Two 14 cm (ID) fluidized bed columns are used, one setup supporting the ozone decomposition reaction and the other installed within a fast XRT facility. Special emphasis is placed on superficial velocities (U0) spanning the entire bubbling regime up to the onset of the turbulent regime (Uc). The particle types employed are Geldart B sand particles and highly dense ferro-silicon (FeSi) particles. Fines are added to both particle types, resulting in a total of four particle systems (sand baseline; sand with fines; FeSi baseline; FeSi with fines). Time constraints on the XRT equipment limited the tomography measurements to the sand baseline particle system. The hydrodynamics of the other particle systems were limited to the pressure signal and optical probe measurements of the ozone decomposition setup. The results of the sand baseline system suggest that a distinction should be made between the low-interaction bubbling regime and the high-interaction bubbling regime. A change in mass transfer behaviour occurs around a U0/Uc value of 0.25. Reactor performance increases up to U0/Uc = 0.7, after which a decreasing trend is observed. An empirical correlation is proposed for the specific interphase mass transfer (kbe) of the higher velocity bubbling regime. This correlation is based on the integration of the hydrodynamics determined by means of XRT and reactor performance: 4-12 The hydrodynamic parameter β gives the best fit for the entire velocity range with an average error of 8%, although it is not recommended for U0/Uc<0.17. It is observed that the classical approach of penetration theory for interphase mass transfer, performs exceptionally well at low velocities (U0/Uc<0.34). The addition of fines to the FeSi particle type decreases the overall reactor performance, despite decreased bubble sizes. The solids fraction, however, unexpectedly increases with the addition of fines and a collapse of the emulsion phase is measured. It is therefore postulated that though flow in the emulsion phase is much higher for the FeSi baseline system and decreases with the addition of fines. For the sand particle type, the behaviour expected from literature is observed: reactor performance increases, bubble sizes decrease and the solids fraction decreases. Very distinct hydrodynamic behaviour is observed for all the fluidization regimes with XRT. Probability density distributions show there are still two phases present in the turbulent regime and that the emulsion-phase solids fraction remains independent of velocity until fast fluidization sets in. The turbulent regime has unique hydrodynamic behaviour, although voids appear to be a transient structure between the structures of the bubbling and fast fluidization regimes. / Thesis (PhD)--University of Pretoria, 2013. / gm2014 / Chemical Engineering / unrestricted
139

High-Density Polyethylene/Peanut Shell Biocomposites

Londoño Ceballos, Mauricio 05 1900 (has links)
A recent trend in the development of renewable and biodegradable materials has led to the development of composites from renewal sources such as natural fibers. This agricultural activity generates a large amount of waste in the form of peanut shells. The motivation for this research is based on the utilization of peanut shells as a viable source for the manufacture of biocomposites. High-density polyethylene (HDPE) is a plastic largely used in the industry due to its durability, high strength to density ratio, and thermal stability. This research focuses in the mechanical and thermal properties of HDPE/peanut shell composites of different qualities and compositions. The samples obtained were subjected to dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical tensile strength tests. TO prepare the samples for analysis, the peanut shells were separated into different mesh sizes and then mixed with HDPE at different concentrations. The results showed that samples with fiber size number 10 exhibited superior strength modulus of 1.65 GPa versus results for HDPE alone at 1.32 GPa. The analysis from the previous experiments helped to determine that the fiber size number 10 at 5%wt. ratio in HDPE provides the most optimal mechanical and thermal results. From tensile tests the highest modulus of elasticity of 1.33 GPa was achieved from the samples of peanut shells size number 10 in HDPE at 20%wt. ratio, while the results for HDPE alone were only of 0.8 GPa. The results proved the hypothesis that the addition of peanut shells to HDPE enhances both the thermal and mechanical properties of the composite.
140

Quantitative Analysis of Antioxidants from High Density Polyethylene (HDPE) by off-line Supercritical Fluid Extraction Coupled High Performance Liquid Chromatography

Pinto, Angela Marie III 27 August 1997 (has links)
Plastics are widely used and they vary in their applicability, ranging from automobile parts, components for houses and buildings, and packaging for everything from food to electronic parts. The diverse applications of plastics, such as polystyrene, polyolefins and polyester, are credited to the incorporation of additives. Additives improve the performance of these and other polymer resins. Without the incorporation of such additives, for example Ethanox ® 330, some plastics would degrade during processing or over time. To ensure that the specified amount of an additive or combination of additives are incorporated into a polymer after the extrusion process, a rapid and accurate analytical method is required. Quantitation of additive(s) in the polymer is necessary, since the additive(s) may degrade and the amount of additive(s) can influence the physical nature of the polymer. Conventional extraction techniques for polymer additive(s), such as, Soxhlet or dissolution / precipitation are labor intensive, time consuming, expensive, and the optimal recovery is significantly less than 90 percent. In addition, a large amount of solvent , such as toluene or decalin, must be eliminated in order to concentrate the sample prior to chromatographic separation. Supercritical Fluid Extraction (SFE) has been employed as an alternative polymer preparation technique. SFE is a favorable means for various analytical sample preparation applications, credited to its short extraction times. This research employs SFE for the extraction of the antioxidant Ethanox® 330 from high density polyethylene (HDPE) followed by HPLC/UV analysis. The effects of temperature, modifier type, and modifier concentration were investigated. Once the optimal extraction conditions were determined, the extraction efficiency of Ethanox ® 330 as a single additive and in the presence of co-additives from HDPE were investigated. Recoveries of greater than 90% were obtained for Ethanox ® 330 when a secondary antioxidant was present in the HDPE. / Master of Science

Page generated in 0.0682 seconds