• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 63
  • 28
  • 25
  • 22
  • 14
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Spectral interferometry for the complete characterisation of near infrared femtosecond and extreme ultraviolet attosecond pulses

Wyatt, Adam Stacey January 2007 (has links)
This thesis describes methods for using spectral interferometry for the complete space-time characterisation of few-cycle near-infrared femtosecond pulses and extreme ultraviolet (XUV) attosecond pulses produced via high harmonic generation (HHG). Few-cycle pulses tend to exhibit one or more of the following: (1) an octave-spanning bandwidth, (2) a highly modulated spectrum and (3) space-time coupling. These characteristics, coupled with the desire to measure them in a single-shot (to characterise shot-to-shot fluctuations) and in real-time (for online optimisation and control) causes problems for conventional characterisation techniques. The first half of this thesis describes a method, based on a spatially encoded arrangement for spectral phase interferometry for direct electric-field reconstruction (SEA-SPIDER). SEA-SPIDER is demonstrated for sub-10fs pulses with a central wavelength near 800nm, a bandwidth over 350nm, and a pulse energy of several nano-Joules. In addition, the pulses exhibit a modulated spectrum and space-time coupling. The spatially-dependent temporal intensity of the pulse is reconstructed and compared to other techniques: interferometric frequency-resolved optical gating (IFROG) and spectral phase interferometry for direct electric field reconstruction (SPIDER). SEA-SPIDER will prove useful in both femtoscience, which requires accurate knowledge of the space-time character of few-cycle pulses, and in HHG, which requires the precise knowledge of the driving pulse for seeding into simulations and controlling the generation process itself. Pulses arising from HHG are known to exhibit significant space-time coupling. The second half of this thesis describes how spectral interferometry may be performed to obtain the complete space-time nature of these fields via the use of lateral shearing interferometry. Finally, it is shown, via numerical simulations, how to extend the SPIDER technique for temporal characterisation of XUV pulses from HHG by driving the process with two spectrally-sheared driving pulses. Different experimental configurations and their applicability to different laser systems are discussed. This method recovers the space-time nature of the harmonics in a single shot, thus reducing the stability constraint currently required for photoelectron based techniques and may serve as a complimentary method for studying interactions of XUV attosecond pulses with matter.
42

Quasi-phase-matching of high-harmonic generation

Robinson, Thomas A. January 2009 (has links)
This thesis describes the use of counterpropagating pulse trains to quasi-phase-match high-harmonic generation (HHG). Two novel techniques for generating trains of ultrafast pulses are described and demonstrated. The first method makes use of a birefringent crystal array to split a single pulse into a sequence of pulses. The second method makes use of the time-varying polarisation of a chirped pulse passed through a multiple-order wave plate to generate a train of pulses by the addition of a polariser. It is demonstrated that this second technique can be used to make pulse trains with non-uniform pulse separation by using an acousto-optic programmable dispersive filter to manipulate the higher-order dispersion encountered by the chirped pulse. The crystal array method is used to demonstrate quasi-phase-matching of HHG in a gas-filled capillary, using one and two counterpropagating pulses. Enhancements of up to 60% of the intensity of the 27th harmonic of the 800,nm driving laser light are observed. Information on the spatial and dynamic properties of the HHG process is obtained from measurements of the coherence length in the capillary. Simulations of HHG in a capillary waveguide have been performed. These agree well with the results of the quasi-phase-matching experiments. The effect of mode-beating on the generation process in a capillary and its use as a quasi-phase-matching mechanism are investigated.
43

Techniques and Application of Electron Spectroscopy Based on Novel X-ray Sources

Plogmaker, Stefan January 2012 (has links)
The curiosity of researchers to find novel characteristics and properties of matter constantly pushes for the development of instrumentation based on X-radiation. I present in this thesis techniques for electron spectroscopy based on developments of X-ray sources both in time structure and energy. One part describes a laser driven High-Harmonic Generation source and the application of an off-plane grating monochromator with additional beamlines and spectrometers. In initial experiments, the source is capable of producing harmonics between the 13th and 23rd of the fundamental laser 800 nm wavelength. The intensity in the 19th harmonic, after monochromatization, was measured to be above 1.2·1010 photons/second with a repetition rate of 5 kHz.  The development of a chopper system synchronized to the bunch clock of an electron storage ring is also presented. The system can be used to adjust the repetition rate of a synchrotron radiation beam to values between 10 and 120 kHz, or for the modulation of continuous sources. The application of the system to both time of flight spectroscopy and laser pump X-ray probe spectroscopy is shown. It was possible to measure triple ionization of Kr and in applied studies the valence band of a laser excited dye-sensitized solar cell interface. The combination of the latter technique with transient absorption measurements is proposed. The organic molecule maleic anhydride (MA) and its binding configuration to the three anatase TiO2 crystals (101), (100), (001) has been investigated by means of Xray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine structure Spectroscopy (NEXAFS). The results provide information on the binding configuration to the 101 crystal. High Kinetic Energy Photoelectron Spectroscopy was used to investigate multilayers of complexes of iron, ruthenium and osmium. The benefit of hard X-rays for ex-situ prepared samples is demonstrated together with the application of resonant valence band measurements to these molecules.
44

Nanoscale Waveguiding Studied by Lensless Coherent Diffractive Imaging using EUV High-Harmonic Generation Source

Zayko, Sergey 21 September 2016 (has links)
No description available.
45

Imagerie nanométrique ultra-rapide par diffraction cohérente de rayonnement XUV produit par génération d'harmoniques d'ordre élevés / Ultrafast Nanoscale Imaging Using Coherent Diffraction of XUV Produced HHG

Cassin, Rémy 21 December 2017 (has links)
L'objectif de ce mémoire est dedévelopper de nouvelles méthodes d'imageriesans lentille en simple tir 2D et 3D avec dessources harmoniques XUV. Un intérêt particulierest porté aux techniques d'imageries permettantl'imagerie des objets biologiques et de phase.Dans un premier temps, on introduit la théorie del'imagerie dans lentille et on détaille lesméthodes utilisées au cours de cette thèse pourreconstruire le champ diffracté par l'objet quel'on souhaite imager. Les techniques d'imageriessont séparées en deux catégories : itératifs etholographiques. On discute des conditionsexpérimentales nécessaires à la reconstruction del'image de l'objet et on compare les avantagesrespectifs des deux types de méthodes. Puis, ondétaille les aspects expérimentaux du faisceauXUV obtenu par HHG et on couvre brièvementla théorie associée à ce processus. La sectionsuivante traite des paramètres et des techniquesde traitement des données influant sur la qualitéde l'image reconstruite en imagerie sans lentille.On montre comment améliorer lesreconstructions HERALDO dans un régime defaible flux de photons. On présente ensuite lesrésultats d'une technique de caractérisationcomplète de la cohérence spatiale d’un faisceauXUV en simple tir. Cette dernière est unparamètre critique de l'imagerie sans lentille. Al'aide d'un tableau non redondant de référencesponctuelles, on mesure la cohérence spatialepour chaque distance entre les références, sansaucune mesure du profil spatial du faisceau. Onmontre que la distribution de la cohérence estgaussienne et que son diamètre dépend desconditions de génération du faisceauharmonique. On étudie aussi quantitativementcomment l'accumulation de plusieurs tirs dediffraction diminue la cohérence apparente dufaisceau. Une expérience d'imagerie d'objets dephase avec une source harmonique pouvant êtreappliquée à des objets biologiques est ensuiteprésentée.A notre connaissance c'est la premièrereconstruction par méthode CDI d'objets dephase avec une source harmonique. La suite dumanuscrit présente les résultats de deuxexpériences visant à réaliser de l'imagerie 3D àl'échelle nanométrique avec une sourceharmonique. Tout d’abord, on présente unetechnique d'imagerie 3D simple tir. C'est lapremière expérience permettant unereconstruction 3D à partir d'une seuleacquisition, avec une résolution spatialenanométrique et une résolution temporellefemtoseconde, sans utiliser de connaissances apriori sur l'objet étudié. Cette technique possèdeun vaste spectre d'application, particulièrementpour l'étude structurelle d'échantillonsbiologiques sensibles aux dégâts d'irradiation.De plus, cette technique peut être facilementapplicable à des FELs et des synchrontrons pourobtenir de meilleures résolutions. La deuxièmeexpérience d'imagerie 3D est une preuve deconcept validant la faisabilité de lacryptomographie avec une source harmonique.Pour reconstruire le volume 3D de l'échantillon,la cryptotomographie utilise des figures dediffraction qui sont acquises pour desorientations de l'échantillon inconnues. Lerégime de faible flux dans lequel on se place nouspermet de simuler les paramètres d'une sourceharmonique fonctionnant dans la fenêtre de l'eau.On conclut que, le niveau du signal de diffractionest suffisant pour pouvoir identifier l'orientationde l'objet à partir des figures de diffractionenregistrées, dans des conditions expérimentalesoptimisées. Ainsi, avec suffisamment de figuresde diffraction enregistrées et assez d'orientationsde l'objet, on peut reconstruire le volume 3D del'objet. Ces résultats impliquent qu'uneexpérience de cryptotomographie d'objetsbiologiques avec une source harmoniquefonctionnant dans la fenêtre de l'eau seraitréalisable. / The aim of this dissertation is todevelop new lensless single shot imagingtechnique in 2D and 3D with XUV harmonicsources which can be applied to study biologicalobjects and phase objects. Firstly, we introducethe theory underlying lensless imagingtechniques and we describe the methods usedduring this thesis to reconstruct the light fielddiffracted by the studied object. The imagingtechniques are split in two categories: iterativeand holographic. The iterative methodsreconstruct the phase of the diffracted wavefront using constraints in the Fourier space andthe reel space. With the holographic techniques,the phase is encoded directly in the interferencefringes between the reference and the objectwithin the diffraction pattern. We discuss theexperimental parameters required to achieve animage reconstruction and we compare therespective advantages of the two types ofmethod. Then, we describe the experimentalparameters of the XUV beam produced by highharmonic generation (HHG) and we brieflyexplain the theory of the HHG. The next sectiondiscusses the parameters the quality of thereconstructed image. We show how to improvethe resolution and the signal to noise ratio usingthe HERALDO technique in the low fluxregime.We then show the result of a new technique forthe single shot characterization of the spatialcoherence of XUV beams. Indeed, the spatialcoherence is a critical parameter for coherentdiffractive imaging techniques. Using a NRA ofreference holes, we measure the spatialcoherence for each distance between each pairof holes, without the knowledge of the intensitydistribution on the sample. We show that thespatial coherence has a gaussian distribution andthat its diameter varies according to thegeneration parameters of the harmonic beam.We also study quantitatively the effect of multishotsaccumulation of the diffraction pattern onthe apparent coherence of the beam. We alsoshow the result of phase object imaging usingcoherent diffractive imaging with a harmonicsource. To our knowledge, this if the first timesuch result has been achieved. The rest of thedissertation present new lensless imaging 3Dtechniques using harmonic sources. The first ofthe last two experiments shown is a lenslesssingle shot stereo 3D technique. It is the first oneallowing a 3D reconstruction from a singleacquisition, with a nanometer spatial resolutionand a femtosecond temporal resolution, withoutusing \textit{a priori} knowledge of the samplestudied. This method has a vast spectrum ofapplication and is particularly interesting for thestructural study of biological sample sensitive toradiation damage and for the study of nonreversibledynamical phenomena in 3D.Furthermore, this can easily be implemented inFELs and synchrotrons to reach even betterspatial resolution. The second 3D experimentshown in this thesis is a proof of concept ofcryptotomography using a high harmonic sourcein a low flux regime. To reconstruct the 3Dvolume of the sample, cryptotomographie usesdiffraction pattern acquired for unknown sampleorientations and therefore non-classified. Thelow flux regime used here simulate the flux of aharmonic source generated in the water window.We conclude from this experiment that, with theproper experimental conditions, the diffractionsignal is sufficient to allow the classification byorientation of the diffraction patterns. Withenough diffraction pattern and angles of thesample recorded, we can achieve a 3Dreconstruction of the sample. This result impliesthat the cryptotomography of biological objectsusing a water window harmonic source ispossible.
46

Broadband Coherent X-ray Diffractive Imaging and Developments towards a High Repetition Rate mid-IR Driven keV High Harmonic Source / Imagerie par diffraction cohérente des rayons X en large bande spectrale et développements vers une source harmonique au keV pompée par laser moyen-infrarouge à haut taux de répétition

Huijts, Julius 20 June 2019 (has links)
Des sources des rayons XUV (1-100 nm) sont des outils extraordinaires pour sonder la dynamique à l’échelle nanométrique avec une résolution femto- voire attoseconde. La génération d’harmoniques d’ordre élevé (GH) est une des sources majeures dans ce domaine d’application. La GH est un processus dans lequel une impulsion laser infrarouge femtoseconde est convertie, de manière cohérente, en fréquences élevées dans le domaine EUV par interaction hautement non-linéaire dans un atome, une molécule et plus récemment, dans un cristal. La GH possède une excellente cohérence spatiale qui a permis de réaliser des démonstrations impressionnantes en imagerie sans lentille. Pour accroître le potentiel de ces sources, des défis sont à relever : leur brillance et énergie de photon maximum doivent augmenter et les techniques d’imagerie sans lentille doivent être modifiées pour être compatibles avec l’importante largeur spectrale des impulsions attosecondes émise par ces sources. Cette thèse présente une nouvelle approche dans laquelle des figures de diffraction large bande, i.e. potentiellement attosecondes, sont rendues monochromatiques numériquement. Cette méthode est basée uniquement sur la mesure du spectre de la source et la supposition d’un échantillon spatialement non-dispersif. Cette approche a été validée tout d’abord dans le visible, à partir d’un supercontinuum. L’échantillon binaire est reconstruit par recouvrement de phase pour une largeur spectrale de 11 %, là où les algorithmes usuels divergent. Les simulations numériques montrent aussi que la méthode de monochromatisation peut être appliquée au domaine des rayons X, avec comme exemple un masque semi-conducteur utilisé en de lithographie EUV. Bien que la brillance « cohérente » de la source actuelle (qui progresse) reste insuffisante, une application sur l’inspection de masques sur source Compton est proposée. Dans une extension de ces simulations un masque de lithographie étendu est reconstruit par ptychographie, démontrant la versatilité à d’autres techniques d’imagerie sans lentille. Nous avons également entamé une série d’expérience dans le domaine des X-durs sur source synchrotron. Les figures de diffraction après monochromatisation numérique semblent prometteuses mais l’analyse des données demandent des efforts supplémentaires. Une partie importante de cette thèse est dédiée à l’extension des sources harmoniques à des brillances et énergies de photon plus élevées. Ce travail exploratoire permettrait la réalisation d’une source harmonique compacte pompée par un laser OPCPA dans le moyen infrarouge à très fort taux de répétition. Les longueurs d’onde moyen infrarouge (3.1 μm dans ce travail de thèse) sont favorables à l’extension des énergies des photons au keV et aux impulsions attosecondes. Le but est de pouvoir couvrir les seuils d’absorption X et d’améliorer la résolution spatio-temporelle. Cependant, deux facteurs rendent cette démonstration difficile: le nombre de photons par impulsion de la source OPCPA est très limité et la réponse du dipôle harmonique à grande longueur est extrêmement faible. Pour relever ces défis plusieurs configurations expérimentales sont explorées : génération dans un jet de gaz ; génération dans une cellule de gaz ; compression solitonique et la génération d’harmoniques combinées dans une fibre à cristal photonique ; compression solitonique dans une fibre à cristal photonique et génération d’harmoniques dans une cellule de gaz. Les premiers résultats expérimentaux sur la compression solitonique jusqu’à 26 femtosecondes et des harmoniques basses jusqu’à l’ordre sept sont présentésEn résumé, ces résultats représentent une avancée vers l’imagerie nanométrique attoseconde sans lentille basée sur des algorithmes « large bande » innovants et une extension des capacités de nouvelles sources harmoniques ‘table-top’ au keV pompées par laser OPCPA. / Soft X-ray sources based on high harmonic generation are up to now unique tools to probe dynamics in matter on femto- to attosecond timescales. High harmonic generation is a process in which an intense femtosecond laser pulse is frequency upconverted to the UV and soft X-ray region through a highly nonlinear interaction in a gas. Thanks to their excellent spatial coherence, they can be used for lensless imaging, which has already led to impressive results. To use these sources to the fullest of their potential, a number of challenges needs to be met: their brightness and maximum photon energy need to be increased and the lensless imaging techniques need to be modified to cope with the large bandwidth of these sources. For the latter, a novel approach is presented, in which broadband diffraction patterns are rendered monochromatic through a numerical treatment based solely on the spectrum and the assumption of a spatially non-dispersive sample. This approach is validated through a broadband lensless imaging experiment on a supercontinuum source in the visible, in which a binary sample was properly reconstructed through phase retrieval for a source bandwidth of 11 %. Through simulations, the numerical monochromatization method is shown to work for hard X-rays as well, with a simplified semiconductor lithography mask as sample. A potential application of lithography mask inspection on an inverse Compton scattering source is proposed, although the conclusion of the analysis is that the current source lacks brightness for the proposal to be realistic. Simulations with sufficient brightness show that the sample is well reconstructed up to 10 % spectral bandwidth at 8 keV. In an extension of these simulations, an extended lithography mask sample is reconstructed through ptychography, showing that the monochromatization method can be applied in combination with different lensless imaging techniques. Through two synchrotron experiments an experimental validation with hard X-rays was attempted, of which the resulting diffraction patterns after numerical monochromatization look promising. The phase retrieval process and data treatment however require additional efforts.An important part of the thesis is dedicated to the extension of high harmonic sources to higher photon energies and increased brightness. This exploratory work is performed towards the realization of a compact high harmonic source on a high repetition rate mid-IR OPCPA laser system, which sustains higher average power and longer wavelengths compared to ubiquitous Ti:Sapphire laser systems. High repetition rates are desirable for numerous applications involving the study of rare events. The use of mid-IR wavelengths (3.1 μm in this work) promises extension of the generated photon energies to the kilo-electronvolt level, allowing shorter pulses, covering more X-ray absorption edges and improving the attainable spatial resolution for imaging. However, high repetition rates come with low pulse energies, which constrains the generation process. The generation with longer wavelengths is challenging due to the significantly lower dipole response of the gas. To cope with these challenges a number of experimental configurations is explored theoretically and experimentally: free-focusing in a gas-jet; free-focusing in a gas cell; soliton compression and high harmonic generation combined in a photonic crystal fiber; separated soliton compression in a photonic crystal fiber and high harmonic generation in a gas cell. First results on soliton compression down to 26 fs and lower harmonics up to the seventh order are presented.Together, these results represent a step towards ultrafast lensless X-ray imaging on table-top sources and towards an extension of the capabilities of these sources.
47

High Harmonic Generation in a Kronig-Penney Model Solid

Thorpe, Adam 16 December 2020 (has links)
In 2010 high harmonic generation (HHG) in solids was first observed where high order harmonics of a strong laser field's frequency were observed. HHG in solids is now a rapidly developing field that allows for exciting applications like fully solid state attosecond XUV sources and new ultrafast resolution imaging techniques for quantum dynamics in solids. HHG in solids has been explained by two mechanisms: an interband mechanism, due to polarization associated with separate energy bands, and an intraband mechanism that results from nonlinearities and population changes associated with each individual band. While interband HHG has been seen in wide bandwidth semiconductors, intraband HHG has been observed in narrow bandwidth dielectrics. There has not yet been an explanation of the alternation of mechanisms with material differences. The main goal of this thesis is to attempt to provide a better understanding of the most important mechanisms and where they prevail. Although numerical modelling of HHG requires consideration of multiple energy bands, a two-band model consisting only of a valence band and a single conduction band can explain the most important mechanisms. This model requires a given material's band gap between its valence and conduction bands as well as dipole matrix elements between the bands. In this thesis we follow the Kronig-Penney model to develop a 1D delta-function potential model of solids to obtain these properties required of the two-band model. We implement this in a Wannier quasi-classical (WQC) model of interband HHG in semiconductors that explains the dominant dynamics leading to such through quasi-classical real space electron-hole pair trajectories. Although HHG in solids can be explained to be the result of a resonant process in which an electron-hole pair is generated in the first step, there are also virtual transition processes that lack consideration. These processes do not conserve energy and correspond to transitions to conduction bands resulting from field induced distortions of the ground state. We use methodology introduced by Keldysh for optical field ionization of atoms and solids along with the 1D delta-function potential model to quantify how both resonant and virtual transitions lead to HHG in solids for wide and low bandwidth solids.
48

Driving strong-field dynamics with tailored laser pulses

Bengs, Ulrich 15 May 2023 (has links)
Durch fortschreitende Entwicklung im Bereich der Starkfeldphysik und der Lasertechnologie in den letzten Jahrzehnten kann die Dynamik von Elektronen induziert durch Laserpulse verschiedener Wellenlängen, komplexen Polarisationseigenschaften, ultrakurzer Dauer und großer Intensität in hohem Umfang kontrolliert und ausgenutzt werden. In dieser Arbeit werden maßgeschneiderte Laserpulse angewendet, um verschiedene Aspekte der atomaren Licht-Materie-Wechselwirkung im Starkfeldbereich zu untersuchen. Im ersten Teil der Arbeit wird insbesondere die Erzeugung von hohen Harmonischen erforscht, die durch zirkular polarisierte Laserfelder erzeugt werden, wobei das maßgeschneiderte Feld aus einem zirkular polarisierten Infrarotpuls und seiner zweiten Harmonischen mit entgegengesetzter zirkularer Polarisation besteht. Die Polarisation von zirkularen hohen Harmonischen wird mittels spektral aufgelöster Polarimetrie unter Verwendung eines selbst entwickelten Polarimeters gemessen und ein Verfahren vorgestellt, mit dem der Stokes-Vektor der hoch zirkular polarisierten Harmonischen vollständig rekonstruiert werden kann. Darüber hinaus wird zum ersten Mal gezeigt, dass das bizirkulare Schema auch auf erzeugende Laserpulse weniger Zyklen erweiterbar ist. Der zweite Teil der Arbeit konzentriert sich auf die Starkfeldanregung eines Atoms durch einen intensiven Laserpuls. Da die ponderomotorische Verschiebung eines ausreichend intensiven Laserpulses eine resonante Anregung eines durch den Stark-Effekt verschobenen Atomzustands sowohl an der Vorder- als auch an der Rückflanke des Pulses bewirkt, diktiert die fundamentale Quantenmechanik, dass die an diesen Instanzen angeregten Elektronenwellenpakete interferieren müssen. Durch Variation der Verzögerung zwischen den Instanzen kann ein Interferenzmuster beobachtet werden, das als Stückelberg-Oszillationen bekannt ist und wertvolle Informationen über die Ionisierungsrate stark angeregter atomarer Zustände enthält. / As our fundamental understanding of strong-field physics and laser technology have matured in the last few decades, we are able to control and exploit electron dynamics using laser pulses of multiple colors, complex polarization properties, ultrashort duration and high intensity. This thesis makes use of such tailored laser fields to study different aspects of atomic light-matter interaction within the strong-field regime. Particularly, the first part of the thesis explores high-harmonic generation driven by circularly polarized driving fields, where the tailored field is composed of a circularly polarized infrared pulse and its second harmonic with opposite circular polarization, often denoted as 'bicircular' driving field. We measure the polarization of bicircularly generated harmonics by means of spectrally resolved polarimetry using a self-developed polarimeter and present a scheme, which allows to fully reconstruct the Stokes vector of the highly circularly polarized harmonics. We further demonstrate for the first time, that the bicircular scheme is also applicable within the regime of few-cycle driving pulses. Applying driving fields containing only a few carrier oscillations, we present the generation of a broadband harmonic spectrum with highly elliptically polarized spectral content, supporting the generation of an isolated attosecond pulse. The second part of the thesis focuses on strong-field excitation of an atom by an intense laser pulse. When the ponderomotive shift of a sufficiently intense laser pulse induces resonant excitation of a Stark-shifted atomic state at both the leading and trailing edge of the pulse, fundamental quantum mechanics dictates that the electron wave packets excited at these instances must interfere. By varying the delay between the instances, we observe the interference pattern known as Stückelberg oscillations which holds valuable information about the ionization rate of strongly driven atomic states.
49

Attosecond Pulse Generation and Characterization

Chirla, Razvan Cristian 19 October 2011 (has links)
No description available.
50

Ultrafast spectroscopy and control of quantum dynamics in tailored multicolor laser fields

Mayer, Nicola 17 April 2024 (has links)
In den letzten Jahrzehnten haben Tischlaserquellen eine bemerkenswerte Entwicklung durchlaufen. Sie sind nun in der Lage, maßgeschneiderte ultrakurze Mehrfarben-Laserpulse zu erzeugen, die es ermöglichen, die elektronische Dynamik in Materialien auf ihrer natürlichen Zeitskala von Attosekunden zu untersuchen. In dieser Arbeit werden verschiedene Kombinationen von elektrischen Feldern genutzt, von extrem-ultravioletten (XUV) bis nahinfraroten Wellenlängen, um komplexe Elektronendynamiken in Atomen und chiralen Medien zu erforschen, zu rekonstruieren und zu kontrollieren. Dabei werden grundlegende Konzepte der Licht-Materie-Wechselwirkung eingeführt, einschließlich starker Feldprozesse, die im Kern der Attosekundenspektroskopie liegen. Ein Schwerpunkt liegt auf der Nutzung eines XUV-Pulses in Kombination mit einem nahinfraroten Puls, um den Bevölkerungstransfer zu hohen Drehimpulszuständen in Heliumatomen zu untersuchen. Durch Manipulation der Laserparameter wird die Rolle des AC Stark-Effekts von gebundenen Zuständen in der beobachteten Dynamik identifiziert. Weitere Untersuchungen umfassen die Verwendung eines bicirculären elektrischen Feldes zur Induktion von HHG in Argon, wobei Anzeichen einer starken Feldfangung von Elektronen in angeregten Zuständen im HHG-Spektrum entdeckt werden. Die Arbeit zeigt die entscheidende Rolle angeregter Zustände in der HHG auf. Zusätzlich wird die Anwendung synthetischer chiraler Felder erforscht, um Chiralität auf achirale Objekte wie Atome zu übertragen, und es wird eine Verbindung zwischen synthetischen chiralen Feldern und strukturiertem Licht hergestellt. / In recent decades table-top laser sources have undergone remarkable development and are now capable of generating tailored ultrashort multicolor laser pulses, enabling the study of electronic dynamics in materials on their natural timescale of the attoseconds. In this thesis work various combinations of electric fields spanning from extreme-ultraviolet (XUV) to near-infrared wavelengths are used to investigate, reconstruct and control complex electron dynamics in atoms and chiral media. The initial chapter of this thesis introduces the fundamental concepts underlying light-matter interaction, including strong field processes which lie at the core of attosecond spectroscopy. The second chapter focuses on the utilization of an XUV pulse combined with a near-infrared pulse to study population transfer to high angular momentum states in helium atoms. By manipulating laser parameters, the study identifies the significant role played by the AC Stark shift of bound states in the observed dynamics. In the third chapter a bicircular electric field is employed to induce HHG in argon. Changing the timedelay between the two frequencies, indications of strong field trapping of electrons in excited states are uncovered within the HHG spectrum, confirming the existence of long-lived trajectories lasting multiple optical cycles. The study conclusively demonstrates the crucial role of excited states in HHG. The fourth chapter explores the application of synthetic chiral fields—whose polarization traces a chiral curve over the optical cycle—to imprint chirality on achiral objects such as atoms, both in the low- and strong-field regime. Moreover, the thesis establishes a connection between synthetic chiral fields and structured light, introducing chiral vortex beams with azimuthally varying handedness.

Page generated in 0.0448 seconds