• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 11
  • 4
  • Tagged with
  • 138
  • 138
  • 122
  • 66
  • 53
  • 31
  • 30
  • 29
  • 26
  • 22
  • 21
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

H-α Emitting Galaxies at z ∼ 0.6 in the Deep And Wide Narrowband Survey

January 2017 (has links)
abstract: New measurements of the Hα luminosity function (LF) and star formation rate (SFR) volume density are presented for galaxies at z∼0.62 in the COSMOS field. These results are part of the Deep And Wide Narrowband Survey (DAWN), a unique infrared imaging program with large areal coverage (∼1.1 deg 2 over 5 fields) and sensitivity (9.9 × 10 −18 erg/cm 2 /s at 5σ). The present sample, based on a single DAWN field, contains 116 Hα emission- line candidates at z∼0.62, 25% of which have spectroscopic confirmations. These candidates have been selected through comparison of narrow and broad-band images in the infrared and through matching with existing catalogs in the COSMOS field. The dust-corrected LF is well described by a Schechter function with L* = 10 42.64±0.92 erg s −1 , Φ* = 10 −3.32±0.93 Mpc −3 (L* Φ* = 10 39.40±0.15 ), and α = −1.75 ± 0.09. From this LF, a SFR density of ρ SF R =10 −1.37±0.08 M○ yr −1 Mpc −3 was calculated. An additional cosmic variance uncertainty of ∼ 20% is also expected. Both the faint end slope and luminosity density that are derived are consistent with prior results at similar redshifts, with reduced uncertainties. An analysis of these Hα emitters’ sizes is also presented, showing a direct corre- lation between the galaxies’ sizes and their Hα emission. / Dissertation/Thesis / Masters Thesis Astrophysics 2017
42

Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function

Yang, Jinyi, Wu, Xue-Bing, Liu, Dezi, Fan, Xiaohui, Yang, Qian, Wang, Feige, McGreer, Ian D., Fan, Zuhui, Yuan, Shuo, Shan, Huanyuan 08 February 2018 (has links)
We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y - K/g - z and J - K/i - Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color-color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y - K/g - z and J - K/i - Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5 < z < 4.5 and i < 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z similar to 2-3. It confirms that our color selections are highly complete in a wide redshift range (z < 4.5), especially over the quasar number density peak at z similar to 2-3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z > 2.5.
43

An ALMA [C ii] Survey of 27 Quasars at z > 5.94

Decarli, Roberto, Walter, Fabian, Venemans, Bram P., Bañados, Eduardo, Bertoldi, Frank, Carilli, Chris, Fan, Xiaohui, Farina, Emanuele Paolo, Mazzucchelli, Chiara, Riechers, Dominik, Rix, Hans-Walter, Strauss, Michael A., Wang, Ran, Yang, Yujin 15 February 2018 (has links)
We present a survey of the [C II] 158 mu m line and underlying far-infrared (FIR) dust continuum emission in a sample of 27 greater than or similar to 6 quasars using the Atacama Large Millimeter Array (ALMA) at similar to 1 '' resolution. The [C II] line was significantly detected (at > 5-sigma) in 23 sources (85%). We find typical line luminosities of L-[C (II]) = 10(9-10) L-circle dot, and an average line width of similar to 385 km s(-1). The [C II]-to-far-infrared luminosity ratios ([C II]/FIR) in our sources span one order of magnitude, highlighting a variety of conditions in the star-forming medium. Four quasar host galaxies are clearly resolved in their [C II] emission on a few kpc scales. Basic estimates of the dynamical masses of the host galaxies give masses between 2 x 10(10) and 2 x 10(11) M-circle dot, i.e., more than an order of magnitude below what is expected from local scaling relations, given the available limits on the masses of the central black holes (> 3 x 10(8) M-circle dot, assuming Eddington-limited accretion). In stacked ALMA [C II] spectra of individual sources in our sample, we find no evidence of a deviation from a single Gaussian profile. The quasar luminosity does not strongly correlate with either the [C II] luminosity or equivalent width. This survey (with typical on-source integration times of 8 minutes) showcases the unparalleled sensitivity of ALMA at millimeter wavelengths, and offers a unique reference sample for the study of the first massive galaxies in the universe.
44

ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7

Strandet, M. L., Weiss, A., Breuck, C. De, Marrone, D. P., Vieira, J. D., Aravena, M., Ashby, M. L. N., Béthermin, M., Bothwell, M. S., Bradford, C. M., Carlstrom, J. E., Chapman, S. C., Cunningham, D. J. M., Chen, Chian-Chou, Fassnacht, C. D., Gonzalez, A. H., Greve, T. R., Gullberg, B., Hayward, C. C., Hezaveh, Y., Litke, K., Ma, J., Malkan, M., Menten, K. M., Miller, T., Murphy, E. J., Narayanan, D., Phadke, K. A., Rotermund, K. M., Spilker, J. S., Sreevani, J. 15 June 2017 (has links)
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z = 6.900 +/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [C I](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and[C II] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [C I] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of M-gas = 3.3 +/- 1.9 x 10(11) M-circle dot. Its large mass and intense star formation is very rare for a source well into the epoch of reionization.
45

Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy

Venemans, Bram P., Walter, Fabian, Decarli, Roberto, Bañados, Eduardo, Carilli, Chris, Winters, Jan Martin, Schuster, Karl, da Cunha, Elisabete, Fan, Xiaohui, Farina, Emanuele Paolo, Mazzucchelli, Chiara, Rix, Hans-Walter, Weiss, Axel 06 December 2017 (has links)
We present IRAM/NOEMA and JVLA observations of the quasar J1342+0928 at z = 7.54 and report detections of copious amounts of dust and [C Pi] emission in the interstellar medium (ISM) of its host galaxy. At this redshift, the age of the universe is 690 Myr, about 10% younger than the redshift of the previous quasar record holder. Yet, the ISM of this new quasar host galaxy is significantly enriched by metals, as evidenced by the detection of the [C 158 mu m cooling line and the underlying far-infrared (FIR) dust continuum emission. To the first order, the FIR properties of this quasar host are similar to those found at a slightly lower redshift (z similar to 6), making this source by far the FIR-brightest galaxy known at z greater than or similar to 7.5. The [C Pi]emission is spatially unresolved, with an upper limit on the diameter of 7 kpc. Together with the measured FWHM of the [C Pi]line, this yields a dynamical mass of the host of <1.5 x 10(11) M-circle dot Using standard assumptions about the dust temperature and emissivity, the NOEMA measurements give a dust mass of (0.6-4.3) x 10(8) M-circle dot The brightness of the [C Pi] luminosity, together with the high dust mass, imply active ongoing star formation in the quasar host. Using [C Pi]-SFR scaling relations, we derive star formation rates of 85-545 M-circle dot yr(-1) in the host, consistent with the values derived from the dust continuum. Indeed, an episode of such past high star formation is needed to explain the presence of similar to 10(8) M-circle dot of dust implied by the observations.
46

PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

Tacconi, L. J., Genzel, R., Saintonge, A., Combes, F., García-Burillo, S., Neri, R., Bolatto, A., Contini, T., Schreiber, N. M. Förster, Lilly, S., Lutz, D., Wuyts, S., Accurso, G., Boissier, J., Boone, F., Bouché, N., Bournaud, F., Burkert, A., Carollo, M., Cooper, M., Cox, P., Feruglio, C., Freundlich, J., Herrera-Camus, R., Juneau, S., Lippa, M., Naab, T., Renzini, A., Salome, P., Sternberg, A., Tadaki, K., Übler, H., Walter, F., Weiner, B., Weiss, A. 05 February 2018 (has links)
This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and similar to 1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M-*/M-circle dot) = 9.0-11.8, and SFRs relative to that on the MS, delta MS = SFR/SFR (MS), from 10(-1.3) to 10(2.2). Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t(depl), defined as the ratio of molecular gas mass to SFR, scales as (1 + z)(-0.6) x (delta MS)(-0.44) and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass mu(gas) depends on (1+ z)(2.5) x (delta MS)(0.52) x (M-*)(-0.36), which tracks the evolution of the specific SFR. The redshift dependence of mu(gas) requires a curvature term, as may the mass dependences of t(depl) and mu(gas). We find no or only weak correlations of t(depl) and mu(gas) with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.
47

Decoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since z = 2.5

Cowley, M. J., Spitler, L. R., Quadri, R. F., Goulding, A. D., Papovich, C., Tran, K. V. H., Labbé, I., Alcorn, L., Allen, R. J., Forrest, B., Glazebrook, K., Kacprzak, G. G., Morrison, G., Nanayakkara, T., Straatman, C. M. S., Tomczak, A. R. 01 1900 (has links)
We investigate the relationship between the black hole accretion rate (BHAR) and star formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 to 2.5. We source galaxies from the K-s-band-selected ZFOURGE survey, which includes multiwavelength data spanning 0.3-160 mu m. We use decomposition software to split the observed spectral energy distributions (SEDs) of our galaxies into their active galactic nuclei (AGNs) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison with BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find that, as the progenitors evolve their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray-/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).
48

A Magellan M2FS Spectroscopic Survey of Galaxies at 5.5 < z < 6.8: Program Overview and a Sample of the Brightest Lyα Emitters

Jiang, Linhua, Shen, Yue, Bian, Fuyan, Zheng, Zhen-Ya, Wu, Jin, Oyarzún, Grecco A., Blanc, Guillermo A., Fan, Xiaohui, Ho, Luis C., Infante, Leopoldo, Wang, Ran, Wu, Xue-Bing, Mateo, Mario, Bailey, John I., Crane, Jeffrey D., Olszewski, Edward W., Shectman, Stephen, Thompson, Ian, Walker, Matthew G. 11 September 2017 (has links)
We present a spectroscopic survey of high-redshift, luminous galaxies over four square degrees on the sky, aiming to build a large and homogeneous sample of Ly alpha emitters (LAEs) at z approximate to 5.7 and 6.5, and Lyman-break galaxies (LBGs) at 5.5 < z < 6.8. The fields that we choose to observe are well studied, such as by the Subaru XMM-Newton Deep Survey and COSMOS. They have deep optical imaging data in a series of broad and narrow bands, allowing for the efficient selection of galaxy candidates. Spectroscopic observations are being carried out using the multi-object spectrograph M2FS on the Magellan Clay telescope. M2FS is efficient enough to identify high-redshift galaxies, owing to its 256 optical fibers deployed over a circular field of view 30' in diameter. We have observed similar to 2.5 square degrees. When the program is completed, we expect to identify more than 400 bright LAEs at z approximate to 5.7 and 6.5, and a substantial number of LBGs at z >= 6. This unique sample will be used to study a variety of galaxy properties and to search for large protoclusters. Furthermore, the statistical properties of these galaxies will be used to probe cosmic reionization. We describe the motivation, program design, target selection, and M2FS observations. We also outline our science goals, and present a sample of the brightest LAEs at z approximate to 5.7 and 6.5. This sample contains 32 LAEs with Ly alpha luminosities higher than 10(43) erg s(-1). A few of them reach >= 3 x 10(43) erg s(-1), comparable to the two most luminous LAEs known at z >= 6, "CR7" and "COLA1." These LAEs provide ideal targets to study extreme galaxies in the distant universe.
49

Lyman continuum escape fraction of faint galaxies at z ~ 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC

Grazian, A., Giallongo, E., Paris, D., Boutsia, K., Dickinson, M., Santini, P., Windhorst, R. A., Jansen, R. A., Cohen, S. H., Ashcraft, T. A., Scarlata, C., Rutkowski, M. J., Vanzella, E., Cusano, F., Cristiani, S., Giavalisco, M., Ferguson, H. C., Koekemoer, A., Grogin, N. A., Castellano, M., Fiore, F., Fontana, A., Marchi, F., Pedichini, F., Pentericci, L., Amorín, R., Barro, G., Bonchi, A., Bongiorno, A., Faber, S. M., Fumana, M., Galametz, A., Guaita, L., Kocevski, D. D., Merlin, E., Nonino, M., O’Connell, R. W., Pilo, S., Ryan, R. E., Sani, E., Speziali, R., Testa, V., Weiner, B., Yan, H. 24 May 2017 (has links)
Context. The reionization of the Universe is one of the most important topics of present-day astrophysical research. The most plausible candidates for the reionization process are star-forming galaxies, which according to the predictions of the majority of the theoretical and semi-analytical models should dominate the H I ionizing background at z greater than or similar to 3. Aims. We measure the Lyman continuum escape fraction, which is one of the key parameters used to compute the contribution of star-forming galaxies to the UV background. It provides the ratio between the photons produced at lambda <= 912 angstrom rest-frame and those that are able to reach the inter-galactic medium, i.e. that are not absorbed by the neutral hydrogen or by the dust of the galaxy's inter-stellar medium. Methods. We used ultra-deep U-band imaging (U = 30.2 mag at 1 sigma) from Large Binocular Camera at the Large Binocular Telescope (LBC/LBT) in the CANDELS/GOODS-North field and deep imaging in the COSMOS and EGS fields in order to estimate the Lyman continuum escape fraction of 69 star-forming galaxies with secure spectroscopic redshifts at 3.27 <= z <= 3.40 to faint magnitude limits (L = 0.2L*, or equivalently M-1500 similar to -19). The narrow redshift range implies that the LBC U-band filter exclusively samples the lambda <= 912 angstrom rest-frame wavelengths. Results. We measured through stacks a stringent upper limit (<1.7% at 1 sigma) for the relative escape fraction of H I ionizing photons from bright galaxies (L > L*), while for the faint population (L = 0.2L*) the limit to the escape fraction is less than or similar to 10%. We computed the contribution of star-forming galaxies to the observed UV background at z similar to 3 and find that it is not sufficient to keep the Universe ionized at these redshifts unless their escape fraction increases significantly (>= 10%) at low luminosities (M-1500 >= -19). Conclusions. We compare our results on the Lyman continuum escape fraction of high-z galaxies with recent estimates in the literature, and discuss future prospects to shed light on the end of the Dark Ages. In the future, strong gravitational lensing will be fundamental in order to measure the Lyman continuum escape fraction down to faint magnitudes (M-1500 similar to -16) that are inaccessible with the present instrumentation on blank fields. These results will be important in order to quantify the role of faint galaxies to the reionization budget.
50

XMM–Newton observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.326

Ai, Yanli, Fabian, A. C., Fan, Xiaohui, Walker, S. A., Ghisellini, G., Sbarrato, T., Dou, Liming, Wang, Feige, Wu, Xue-Bing, Feng, Longlong 09 1900 (has links)
A brief Chandra observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.326 showed it to be a relatively bright, soft X-ray source with a count rate of about 1 count ks(-1). In this article, we present results for the quasar from a 65-ks XMM-Newton observation, which constrains its spectral shape well. The quasar is clearly detected with a total of similar to 460 net counts in the 0.2-10 keV band. The spectrum is characterized by a simple power-law model with a photon index of Gamma = 2.30(-0.10)(+0.10) and the intrinsic 2-10 keV luminosity is 3.14 x 10(45) erg s(-1). The 1 sigma upper limit to any intrinsic absorption column density is N-H = 6.07 x 10(22) cm(-2). No significant iron emission lines were detected. We derive an X-ray-to- optical flux ratio alpha(ox) of -1.74 +/- 0.01, consistent with the values found in other quasars of comparable ultraviolet luminosity. We did not detect significant flux variations either in the XMM-Newton exposure or between XMM-Newton and Chandra observations, which are separated by similar to 8 months. The X-ray observation enables the bolometric luminosity to be calculated after modelling the spectral energy distribution: the accretion rate is found to be sub-Eddington.

Page generated in 0.043 seconds