• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 304
  • 97
  • 71
  • 43
  • 24
  • 13
  • 8
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 711
  • 711
  • 122
  • 100
  • 97
  • 95
  • 85
  • 75
  • 67
  • 63
  • 63
  • 59
  • 53
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Constraining fracture permeability by characterizing fracture surface roughness

Al-Johar, Mishal Mansour 16 February 2011 (has links)
Open and connected fractures, where present, control fluid flow and dominate solute transport. Flow through fractures has major implications for water resource management, underground waste repositories, contaminant remediation, and hydrocarbon exploitation. Complex fracture morphology makes it difficult to quantify and predict flow and transport accurately. The difficulty in usefully describing the complex morphology of a real fracture from a small 3-D volume or 2-D profile sample remains unresolved. Furthermore, even when complex fracture morphology is measured across three-dimensions, accurate prediction of discharge remains difficult. High resolution x-ray computed tomography (HXRCT) data collected for over 20 rock surfaces and fractures provide a useful dataset to study fracture morphology across scales of several orders of magnitude. Samples include fractured rock of varying lithology, including sandstone, volcanic tuffs and crystalline igneous and metamorphic rocks. Results suggest that the influence of grain size on surface roughness is not readily apparent due to other competing variables such as mechanics, skins and coatings, and weathering and erosion. Flow tests of HXRCT-scanned fractures provide real discharge data allowing the hydraulic aperture to be directly measured. Scale-invariant descriptions of surface roughness can produce constrained estimates of aperture variability and possibly yield better predictions of fluid flow through fractures. Often, a distinction is not made between the apparent and true fracture apertures for rough fractures measured on a 2-D topographic grid. I compare a variety of local aperture measurements, including the apparent aperture, two-dimensional circular tangential aperture, and three-dimensional spherical tangential aperture. The mechanical aperture, the arithmetic mean of the apparent local aperture, is always the largest aperture. The other aperture metrics vary in their ranking, but remain similar. Results suggest that it may not be necessary to differentiate between the apparent and true apertures. Rock fracture aperture is the predominant control on permeability, and surface roughness controls fracture aperture. A variety of surface roughness characterizations using statistical and fractal methods are compared. A combination of the root-mean-square roughness and the surface-to-footprint ratio are found to be the most useful descriptors of rock fracture roughness. Mated fracture surfaces are observed to have nearly identical characterizations of fracture surface roughness, suggesting that rock fractures can be sampled by using only one surface, resulting in a significantly easier sampling requirement. For mated fractures that have at least one point in contact, a maximum potential aperture can be constrained by reflecting and translating a single surface. The maximized aperture has a nearly perfect correlation with the RMS roughness of the surface. These results may allow better predictions of fracture permeability thereby providing a better understanding of subsurface fracture flow for applications to contaminant remediation and water and hydrocarbon management. Further research must address upscaling fracture morphology from hand samples to outcrops and characterizing entire fracture networks from samples of single fractures. / text
142

Anamorphic Preclinical SPECT Imaging with High-Resolution Silicon Double-Sided Strip Detectors

Durko, Heather Lynn January 2014 (has links)
Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnications are not constrained to be equal. We incorporated a 60 mm x 60 mm, millimeter-thick megapixel silicon double-sided strip detector that permits ultrahigh-resolution imaging. While the stopping power of silicon is low for many common clinical radioisotopes, its performance is sufficient in the range of 20-60 keV to allow practical imaging experiments. The low-energy emissions of ¹²⁵I fall within this energy window, and the 60-day half life provides an advantage for longitudinal studies. The flexible nature of this system allows the future application of adaptive imaging techniques. We have demonstrated ~225-μm axial and ~175-μm transaxial resolution across a 2.65 cm³ cylindrical field of view, as well as the capability for simultaneous multi-isotope acquisitions. We describe the key advancements that have made this system operational, including bringing up a new detector readout ASIC, development of detector control software and data-processing algorithms, and characterization of operating characteristics. We describe design and fabrication of the adjustable slit aperture platform, as well as the development of an accurate imaging forward model and its application in a novel geometric calibration technique and a GPU-based ultrahigh-resolution reconstruction code.
143

High-Resolution Fluorescence Microscopy with Photoswitchable Fluorescent Proteins / Hochauflösende Fluoreszenzmikroskopie mit fotoschaltbaren fluoreszenten Proteinen

Bock, Hannes 18 December 2008 (has links)
No description available.
144

HIGH-RESOLUTION 3D SEISMIC INVESTIGATIONS OF HYDRATE-BEARING FLUID-ESCAPE CHIMNEYS IN THE NYEGGA REGION OF THE VØRING PLATEAU, NORWAY

Westbrook, Graham K., Exley, Russell, Minshull, T.A., Nouzé, Hervé, Gailler, Audrey, Jose, Tesmi, Ker, Stephan, Plaza, Andreia 07 1900 (has links)
Hundreds of pockmarks and mounds, which seismic reflection sections show to be underlain by chimney-like structures, exist in southeast part of the Vøring plateau, Norwegian continental margin. These chimneys may be representative of a class of feature of global importance for the escape of methane from beneath continental margins and for the provision of a habitat for the communities of chemosynthetic biota. Thinning of the time intervals between reflectors in the flanks of chimneys, observed on several high-resolution seismic sections, could be caused by the presence of higher velocity material such as hydrate or authigenic carbonate, which is abundant at the seabed in pockmarks in this area. Evidence for the presence of hydrate was obtained from cores at five locations visited by the Professor Logachev during TTR Cruise 16, Leg 3 in 2006. Two of these pockmarks, each about 300-m wide with active seeps within them, were the sites of high-resolution seismic experiments employing arrays of 4-component OBS (Ocean-Bottom Seismic recorders) with approximately 100-m separation to investigate the 3D variation in their structure and properties. Shot lines at 50-m spacing, run with mini-GI guns fired at 8-m intervals, provided dense seismic coverage of the sub-seabed structure. These were supplemented by MAK deep-tow 5-kHz profiles to provide very high-resolution detail of features within the top 1-40 m sub-seabed. Travel-time tomography has been used to detail the variation in Vp and Vs within and around the chimneys. Locally high-amplitude reflectors of negative polarity in the flanks of chimneys and scattering and attenuation within the interiors of the chimneys may be caused by the presence of free gas within the hydrate stability field. A large zone of free gas beneath the hydrate stability field, apparently feeding several pockmarks, is indicated by attenuation and velocity pull-down of reflectors.
145

A GEOPHYSICAL STUDY OF A POCKMARK IN THE NYEGGA REGION, NORWEGIAN SEA

Jose, Tesmi, Minshull, T.A., Westbrook, Graham K., Nouzé, Hervé, Ker, Stephan, Gailler, Audrey, Exley, Russell, Berndt, Christian 07 1900 (has links)
Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.
146

Development of a desktop high-resolution MRI for microflow visualization

Sahebjavaher, Ramin 11 1900 (has links)
Research in lab-on-a-chip (LOC) technology involving microfluidics is a growing field aiming at the development of miniaturized biomedical systems with rich functionality. In order to design effective LOC microfluidic systems, the flow fields and the fluids inside LOC devices need to be carefully characterized. High-resolution magnetic resonance imaging (MRI) offers a powerful non-intrusive technology for this application. In this thesis, the design and implementation of a prototype for a desktop high-resolution MRI instrument, consisting of a magnet, gradient coils, gradient amplifiers, and radio frequency (RF) electronics, is presented. To reduce the size and cost of this MRI instrument, a permanent magnetic configuration with a magnetic flux density of 0.6 T is designed with off-the-shelf NdFeB permanent magnets. The coils of the triaxial gradient module are developed using a novel lithography technique. This gradient module is capable of generating gradient fields as high as 2.83 T/m with custom made current amplifiers. The radio frequency (RF) probe is integrated with the gradient module and is connected to the RF electronics which are made using off-the-shelf components. Pulse sequences and signal processing for acquiring static images and velocity profiles are described. The performance of this instrument in terms of static and dynamic image resolution are presented. As a preliminary test, the velocity profile of water flowing inside a small tube was measured with a nominal resolution of 40 μm. The instrument is designed for a static resolution of better than 30 μm and a velocity resolution better than 50 μm/s. Improvements to the current instrument in addition to theoretical limitations are also detailed.
147

Using High-Resolution Spectroscopy To Improve The Determination Of Effective Temperatures OF Pre-Main Sequence Stars

Grunhut, JASON 17 February 2009 (has links)
Herbig Ae/Be (HAeBe) stars are the pre-main sequence progenitors of main sequence A and B stars, and are characterized observationally by strong emission in spectral lines and significant infra-red excess that results from their presence in dust-obscured regions. These stars are usually surrounded by a complex environment composed of gas and dust and often a significant stellar wind and a circumstellar disc. This complex circumstellar environment can have a significant affect on their spectral energy distributions, leading to large systematic uncertainties in determinations of their effective temperatures from photometric methods. In an attempt to improve temperature determinations for HAeBe stars, we have conducted an experiment to evaluate the potential of high-resolution spectra to constrain their atmospheric parameters. To this end, high-resolution (R~68 000) and low-resolution (R~1500) spectra obtained using the ESPaDOnS spectropolarimeter (at the Canada-France-Hawaii telescope) and the FORS1 spectropolarimeter (at the Very Large Telescope) have been used with an automatic spectrum fitting procedure. This procedure compares spectroscopic data to a grid of synthetic LTE, solar abundance spectra, spanning a range in effective temperature, surface gravity, and micro-turbulence. This analysis was applied to the spectra of a sample of twelve previously well-studied HAeBe stars. Our temperatures were found to be consistent with previously published values, while providing much lower uncertainties - in some cases about 5 times smaller. Numerous methods were investigated to obtain these quantitative uncertainties (chi-squared statistics, Bayesian analysis, Monte Carlo bootstrap method, individual temperature sensitive line region analysis). We conclude that our method can be used to efficiently and effectively obtain temperatures of HAeBe stars in addition to providing us with a characterization of the degree of departure of the spectrum from solar abundance, LTE photospheric models. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-02-13 10:23:04.9
148

DIRECTION OF ARRIVAL ESTIMATION IN PASSIVE SONAR

Massoud, ALI 27 June 2012 (has links)
Since World War I, the area of acoustic undersea warfare has witnessed several research activities targeting the development of advanced systems to accurately detect and localize underwater moving targets. One of the main categories of these systems is the passive sound navigation and ranging (SONAR) that searches for the location of the ships and submarines by listening to the radiated noise produced by their propellers, machinery, and flow dynamics. The performance of the passive sonar highly depends on the particular array signal processing algorithms used in practice. Presently, one of the main challenges is to accurately estimate the target direction of arrival (DOA) in severe underwater environments. This thesis is proposed to enhance the DOA estimation in two distinct applications. This first application is to improve the spatial resolution of the uniform linear towed arrays. This is done by applying new spatial extrapolation techniques called 2D- and 3D- fast orthogonal search (FOS) for both uniform linear and rectangular arrays, respectively. The presented methods show better performance than the conventional methods with respect to signal to noise ratio (SNR), number of snapshots and angular separation. Moreover it reduces the computational complexity required by the spatial extrapolation methods based on linear prediction approach. The other application concerns with developing a new DOA estimation that provides better spatial spectrum than the one provided by conventional beamforming (CBF) when a nonuniform linear array of directional frequency analysis and recording (DIFAR) sonobuoys is employed. The introduced technique or the so called fourth order cumulant beamforming (FOCBF) and shows an outstanding performance compared to CBF especially in low SNR. Furthermore, a warping FOC-BF (WFOC-BF) method obtained by augmenting a warping beamforming technique with FOC-BF is proposed to reduce the required computational complexity by FOC-BF while preserving the same performance. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2012-06-27 14:59:33.941
149

High resolution simulations of synoptic scale 'paleometeorology' during the last glacial maximum

Unterman, Matthew Blair January 2012 (has links)
Hourly winter weather conditions of the Last Glacial Maximum (LGM) are simulated using the Community Climate Model version 3 (CCM3) on a globally resolved T170 (~75 km) grid. This simulation has been run in-tandem with a lower temporally resolved six-year climatological run. The purpose of the study is to determine: (1) whether examination of higher-resolution simulations, on both spatial and temporal scales, can enhance paleometeorological inferences based previously on monthly statistics of model output and (2) whether certain synoptic-scale events, which may have only a modest impact on seasonal statistics, might exert a disproportionate impact on geological climate records. Analysis is focused on changes in wind flow, no analogue climate “states”, synoptic scale events including Northern Hemisphere cyclogenesis, and gust events over glacial dust source regions. Results show a decrease in North Atlantic and increase in North Pacific cyclogenesis during the LGM. Storm trajectories react to the mechanical forcing of the Laurentide Ice Sheet, with Pacific storms tracking over middle Alaska and northern Canada and terminate in the Labrador Sea. The latter result supports observations and other model runs showing a significant reduction in Greenland winter precipitation. The modified Pacific track results in increased precipitation and the delivery of warmer air along the west coast of North America. This could explain “early” glacial warming inferred in this region from proxy climate records, potentially representing instead a natural regional response to ice age boundary conditions. Results also indicate a low variability, “no analogue” region just south of the Laurentide Ice Sheet margin which has appropriate conditions to harbour temperature-sensitive trees west of the Appalachian Mountains. Combined with pollen data, this lends valuable insight into the known disagreement between modern seed dispersal experiments and calculated migration rates. Finally, hourly-scale gust events over dust source regions during the LGM are two to five times greater than the modern, providing a mechanism to help explain the increased glacial dust load seen in the ice cores. Backwards air-parcel trajectories from Antarctic ice core locations show air sources over Patagonia and the Altiplano with some inputs from South Africa agreeing with recent isotopic tracer analyses. Results demonstrate that high temporal and spatial resolution simulations can provide valuable insight to add to the cornucopia of information already available from lower-resolution runs. They can also enhance our interpretation of geological records, which have been previously assumed to record longer time-scale climatological mean-states and thus ignoring any extreme synoptic events which may actually have had a disproportionate impact on their preservation.
150

High-Resolution Diffusion Tensor Imaging and Human Brain Connectivity

Guidon, Arnaud January 2013 (has links)
<p>Diffusion tensor imaging (DTI) has emerged as a unique method to characterize brain tissue microstructure non-invasively. DTI typically provides the ability to study white matter structure with a standard voxel resolution of 8&mu;L over imaging field-of-views of the extent of the human brain. As such, it has long been recognized as a promising tool not only in clinical research for the diagnostic and monitoring of white matter diseases, but also for investigating the fundamental biological principles underlying the organization of long and short-range cortical networks. However, the complexity of brain structure within an MRI voxel makes it difficult to dissociate the tissue origins of the measured anisotropy. The tensor characterization is a composite result of proton pools in different tissue and cell structures with diverse diffusion properties. As such, partial volume effects introduce a strong bias which can lead to spurious measurements, especially in regions with a complex tissue structure such as interdigitating crossing fibers or in convoluted cortical folds near the grey/white matter interface.</p><p>This dissertation focuses on the design and development of acquisition and image reconstruction strategies to improve the spatial resolution of diffusion imaging. After a brief review of the theory of diffusion MRI and of the basic principles of streamline tractography in the human brain, the main challenges to increasing the spatial resolution are discussed. A comprehensive characterization of artifacts due to motion and field inhomogeneities is provided and novel corrective methods are proposed to enable the acquisition of diffusion weighted data with 2D mulitslice imaging techniques with full brain coverage, increased SNR and high spatial resolutions of 1.25&times;1.25&times;1.25 mm<super>3</super> within an acceptable scan time. The method is extended to a multishot k<sub>_z</sub>-encoded 3D multislab spiral DTI and evaluated in normal human volunteers.</p><p>To demonstrate the increased SNR and enhanced resolution capability of the proposed methods and more generally to assess the value of high-spatial resolution in diffusion imaging, a study of cortical depth-dependence of fractional anisotropy was performed at an unprecedented <italic>in-vivo</italic> inplane resolution of 0.390&times;0.390&mu;m<super>2</super> and an investigation of the trade-offs between spatial resolution and cortical specificity was conducted within the connectome framework.</p> / Dissertation

Page generated in 0.1501 seconds