31 |
High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometersGraf zu Eulenburg, Alexander January 1999 (has links)
No description available.
|
32 |
Ultrafast processes in high temperature superconductorsGay, Pierre January 2000 (has links)
Using time-resolved photo-induced reflectivity, we reported for the first time a systematic work on the ultrafast response of Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub> (BSCCO-2212) and Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6+δ</sub> (TBCO-2201), measurements of detwinned YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> (YBCO-123) single crystal with the electric field ̲E parallel to the a and b-axis and high-resolution measurements of the rising edge dynamics of YBCO-123 thin films. We identified similar photo-induced responses for BSCCO, TBCO and for YBCO with ̲E ⥠̲b, which indicates that we observed a universal response of HTSC coming from the CuO2 superconducting planes. This latter dynamics is composed of three different components corresponding to the superconducting, pseudogap and normal state. A bi-molecular model has been put forward to explain the linear temperature dependence of the decay rate; the model implies that the re-formation of the condensate is limited by the rate at which quasiparticle interact. Moreover, we observed superconducting fluctuations up to 13K above T<sub>c</sub> and a divergence of the long-lived component magnitude at very low temperature, which is explained by a cw heating model. In the pseudogap state, we have several indications that the negative peak observed between T<sub>c</sub> and T* has a different origin from that of the superconducting signal below T<sub>c</sub>. We argued that the probe mechanism of the pseudogap signal is electronic excitations of the pseudogap correlations. In the normal state, the observed dynamics is similar to that of simple metals. In the second part of this thesis, the rising edge dynamics of YBCO has been resolved in time. The model developed to interpret the results implies that the hot quasiparticles relaxation time down to the Fermi energy is 55fs. In this context, we proved that the Mazin model cannot explain both the oscillatory and the non-oscillatory part of the dynamics in YBCO. Finally, in YBCO-123, a new response has been observed with ̲E ⥠̲b. We argued that the origin of this component is intraband transitions. This dynamics is solely responsive to the pseudogap, coming from the difference in scattering rate between pre-formed pairs and quasiparticles in the Drude reflectivity. The response with ̲E ⥠̲b exhibits a strong a-b plane anisotropy in its long-lived component, which can be interpreted as a d-wave gap symmetry using the thermally-activated model.
|
33 |
Charge transfer at the high-temperature superconductor/liquid electrolyte interfaceLe Poul, Nicolas January 2001 (has links)
No description available.
|
34 |
An investigation of stoichiometetry and thermo-mechanical processing parameters of (Pb,Bi)â†2Srâ†2Caâ†2Cuâ†3Oâ†x superconducting tapesFeltham, Stuart Paul January 2001 (has links)
No description available.
|
35 |
Magnetic separation using high-Tâ†c superconductorsBolt, Livia January 2001 (has links)
No description available.
|
36 |
The magnetic properties of superconductorsLloyd, Sion January 1999 (has links)
No description available.
|
37 |
A study of structure-property relationships in layered copper oxidesHyatt, Neil January 2000 (has links)
No description available.
|
38 |
Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technologySaleh, Paul Matthew January 2000 (has links)
No description available.
|
39 |
The fabrication of a high temperature superconducting magnet and critical current characterisation of the component Bi₂Sr₂Ca₂Cu₃Oₓ tapes and filaments in high magnetic fieldsSneary, Adrian Bernard January 2000 (has links)
The transport critical current density (J(_c)) of a 37 filament Bi-2223/Ag tape has been measured as a function of field and temperature from 4.2 K up to 90 K. Data have been obtained over a large current range from 10 mA up to 100 A and in fields up to 23 T with the tape in 3 orientations with respect to field. These comprehensive data have been used to test the predictions of the flux creep and weak link models used to explain J(_c) in Bi-2223 tapes. The J(_c)(B,T) dependence of optimised Bi-2223 tapes has been calculated using a curved film model. The model assumes perfect grain connectivity and that the local superconducting properties are equivalent to those in the best reported thin films. A comparison between the calculations and measured J(_c)(B,T) dependencies suggest that in high fields at 20 K, J(_c) in presently available industrially processed tapes is only a factor of 8 below the performance of ideal fully optimised tapes. Transport measurements have been made on Bi-2223 single filaments extracted from an alloy sheathed multifilamentary tape in liquid nitrogen at 77 K in fields up to 300 mT with the field aligned parallel and perpendicular to the a-b planes. Further Jc(B,T) data have been taken in a variable temperature insert at temperatures between 60 to 90 K in fields up to 15 T. In a study of the electric field-current density {E-J) characteristics of the c-axis orientated data at 77 K, negative curvature is observed in traces below 280 mT. However, the 280 mT trace exhibits both positive and negative curvature in different current regimes in contrast to the predictions of standard theory. A laboratory scale Bi-2223 superconducting magnet producing a maximum field of 1.29 T at 4.2 K has been designed and fabricated. The magnet comprises 6 resin impregnated double wound pancakes with a 40 mm bore fabricated via the react and wind route. Critical current density measurements have been made as a function of magnetic field, angle and strain at 4.2 K and 77 K on short samples of the constituent tape. The E-J characteristics of all component coils have been measured and a comparison with short sample data shows that minimal additional damage occurred beyond that produced by the bending strain on the tape and the long length variation in J(_c). Sufficient detail is provided for the non-specialist to assess the potential use of brittle superconducting tapes for magnet technology and construct a laboratory scale magnet.
|
40 |
Growth of superconducting and ferroelectric heterostructures / Crescimento de heteroestruturas supercondutoras e ferroelétricasOliveira, Felipe Ferraz Morgado de 20 December 2018 (has links)
The phase diagram of complex oxides is very diverse due to the strong interaction between electrons in the electronic structure. It is possible to probe those interactions by changing electrostatically the carrier density, the main concept behind the Field-Effect Transistors (FET) which is the building blocks of nanoelectronics devices. In the case of high-TC superconductor copper oxides, it is possible to use this concept to switch between superconducting and insulator phases, for example using an adjacent liquid electrolyte layer to inject charges in a superconducting film. With that in mind, the objective of this work was to establish protocols to grow superconductor and ferroelectric films for future fabrication of superconducting FET devices. We optimized the deposition conditions for the growth of a single layer of superconductor YBa2Cu3O7–x and the ferroelectric barium titanate on SrTiO3 substrates by pulsed laser deposition (PLD). Several techniques were employed to study the properties of the thin films, such as X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy, resistance vs temperature and ferroelectric hysteresis. Regarding the superconductors thin films, we observed several relations between the superconducting features and the growth parameters. For instance, lower growth temperatures contribute to the nucleation of a-axis oriented grains meanwhile higher growth temperature tends to be c-axis oriented. Regarding the frequency of the laser (proportional to the growth rate), it seems that lower frequency is related to higher surface roughness and the presence of non-superconducting contributions. As it increases, the roughness decrease and the sample presents a sharper superconducting transition. Finally, we also did the first steps towards the field effect device by growing a heterostructure thin film consisting of a superconductor and ferroelectric material. The sample grew c-axis oriented on strontium titanate substrate, though with a high value of surface roughness. / O diagrama de fase dos óxidos complexos é muito diverso devido à forte interação entre os elétrons na estrutura eletrônica. É possível sondar essas interações alterando eletrostaticamente a densidade da portadores, o principal conceito por trás dos transistores de efeito de campo (FET), que é o elemento fundamental dos dispositivos nanoeletrônicos. No caso de supercondutores de alta temperatura a base de óxidos de cobre, é possível usar este conceito para alternar entre fases supercondutoras e isolantes, por exemplo utilizando uma camada adjacente de eletrólito líquido para injetar cargas no filme supercondutor. Com isso em mente, o objetivo desse trabalho foi estabelecer protocolos para crescer filmes supercondutores e ferroelétricos para fabricações futuras de dipositivos FET supercodutores. Nós optimizamos as condições de deposição para o crescimento de uma única camada do supercondutor YBa2Cu3O7–x e do ferroeléctrico titanato de bário em substratos SrTiO3 por deposição de laser pulsado (PLD). Diversas técnicas foram empregadas para estudar as propriedades dos filmes finos, como difração de raios-X, microscopia de força atômica, espectroscopia de fotoelétrons de raios-X, resistência vs temperatura e histerese ferroelétrica. Em relação aos filmes finos supercondutores, observamos várias relações das propriedades supercondutoras com os parâmetros de crescimento. Por exemplo, temperaturas de crescimento mais baixas contribuem para a nucleação de grãos orientados no eixo a, enquanto a temperatura de crescimento mais alta tende a ser orientada para o eixo c. Em relação à frequência do laser (proporcional à taxa de crescimento), há um indício que valores menores de frequência está relacionada à maior rugosidade superficial e à presença de contribuições não supercondutoras. À medida que aumenta a frequência, a rugosidade diminui e a amostra apresenta uma transição supercondutora mais nítida. Por fim, também fizemos os primeiros passos em direção ao dispositivo de efeito de campo, desenvolvendo um filme fino de heteroestrutura com um material supercondutor e ferroelétrico. A amostra cresceu orientada no eixo c em substrato de titanato de estrôncio com alto valor de rugosidade superficial.
|
Page generated in 0.0595 seconds