• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 41
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Composants à hauts facteurs de forme pour les résonateurs acousto-électriques et les dispositifs électro-optiques sur substrats mono-cristallins / High aspect ratio structures for electro-acoustic resonators and electro-optic devices on single crystal substractes.

Henrot, Fabien 31 March 2015 (has links)
La miniaturisation est l’objectif actuel de tous les fabricants de composants radio-fréquence depuis plusieursdécennies. Si les composants actifs pour la microélectronique sont fondés sur la structuration de plaquesde silicium, les composants passifs reposent sur l’utilisation de cristaux tels que le quartz ou le niobate delithium. Ce dernier est particulièrement utilisé quand il s’agit de générer et exploiter des ondes élastiques, ainsique pour le guidage de faisceaux lumineux afin de réaliser des filtres ou des capteurs sensibles à différentsparamètres environnementaux. L’amélioration du guidage de ces ondes permet un gain en consommation et encompacité des dispositifs mais nécessite une structuration de la matière souvent tridimensionnelle. Cette étapetechnologique clé est industriellement mature pour la mise en forme du silicium, mais s’avère di_cilementtransposable à des matériaux tels que le quartz ou le niobate de lithium. Les travaux présentés dans cemanuscrit visent à réaliser des structures tridimensionnelles à hauts facteurs de forme dans des matériauxmonocristallins à l’aide d’une scie circulaire de précision. Des structures utilisant l’inversion périodique dedomaine ferroélectrique seront réalisées afin de les utiliser pour y guider des ondes élastiques possédant descouplages électromécaniques particulièrement élevées. Le guidage d’ondes optiques par le biais de ces mêmesstructures permet une amélioration du confinement par rapport aux systèmes de guidage massifs classiquescouramment utilisés pour la réalisation de filtre ou de modulateur électro-optiques. En utilisant conjointementle guidage d’ondes optiques et les domaines ferroélectriques alternés, les structures ainsi découpées permettentl’apparition de phénomènes optiques non-linéaires exaltés par l’amélioration du confinement. Ces structuresont ainsi montré leur intérêt dans plusieurs domaines de la physique avec un champ applicatif particulièrementvaste / Over the past decades, minutiarization and compacity have become a focus subject for companies specialisedin the manufacturing of radio-frequency components. Active components are typically manuafctured onsilicon wafers with well-known structuring methods. Passive ones are often manufactured on single cristalsuch as Quartz or Lithium Niobate, especially for acoustic wave generation or lightwave guiding. Theguiding of optical or acoustical waves leads to the manufacturing of sensors or filters which can be usedfor telecommunications or for the industry. Improvement in waveguiding allows for less power-consuming andmore compact devices but a 3D-structuring is usually required. This technology readness is high leveled forsilicon structuring but not for single crystals such as Lithium Niobate. This work presents the development andthe manufacturing of high aspect ratio three-dimensionnal structures in single-crystals using precise sawing.These structures show an optical waveguiding capability which allow the improvements of electro-opticmodulators or filters. Combined with a periodic reversing of Lithium Niobate polarization, these structuresallows for bulk acoustic wave generation leading to high electromechanical coupling and equivalent phasevelocity resonant modes. In non-linear optic field, this kind of structures lead to the improvement of secondharmonic generation e_ciency by reducing the cross section of waveguide. The manufactured devices in theframework of this project can actuelly be used in several domains of physic.
22

Micromachined capacitive silicon bulk acoustic wave gyroscopes

Johari, Houri 18 November 2008 (has links)
Micromachined gyroscopes are attractive replacements to conventional macro-mechanical and optical gyroscopes due to their small size, low power and low cost. The application domain of these devices is quickly expanding from automotive to aerospace and consumer electronics industries. As potential high volume consumer applications for micromachined gyroscopes continue to emerge, design and manufacturing techniques that improve their performance, shock survivability and reliability without driving up the cost and size become important. Today, state-of-the-art micromachined gyroscopes can achieve high performance with low frequency operation (3-30kHz) but at the cost of large form factor, large operating voltages and high vacuum packaging. At the same time, most consumer applications require gyroscopes with fast response time and high shock survivability, which are generally unavailable in low frequency gyroscopes. As a result, innovative designs and fabrication technologies that will offer more practical gyroscopes are desired. In this dissertation, capacitive bulk acoustic wave (BAW) silicon disk gyroscopes are introduced as a new class of micromachined gyroscope to investigate the operation of Coriolis-based vibratory gyroscopes at high frequency and further meet consumer electronics market demands. Capacitive BAW gyroscopes, operating in the frequency range of 1-10MHz are stationary devices with vibration amplitudes less than 20nm, resulting in high device bandwidth and high shock tolerance. They require low operating voltages, which simplifies the interface circuit design and implementation in standard CMOS technologies. They also demonstrate appropriate thermally stable performance in air, which eliminates the need both for vacuum packaging and for temperature control. A revised high aspect ratio poly- and single crystal silicon (HARPSS) process was utilized to implement these devices in thick SOI substrates with very small capacitive gap sizes (~200 nm). The prototype devices show ultra-high quality factors (Q>200,000) and large bandwidth of 15-30Hz. In addition, the design and implementation of BAW disk gyroscopes are optimized for self-matched mode operation. Operating a vibratory gyroscope in matched mode is a straightforward way to improve performance parameters but, is challenging to achieve without applying large voltages. In this work, self-matched mode operation was provided by enhanced design of the perforations of the disk structure. Furthermore, a multi-axis BAW gyroscope, an extension of the z-axis, is developed. This novel approach avoids the issues associated with integrating multiple proof masses, permitting a very small form factor. The multi-axis gyroscopes operate in out-of plane and in-plane modes to measure the rotation rate around the x- and z-axes. These gyroscopes were also optimized to achieve self-matched mode operation in their both modes.
23

Μελέτη περίσφιγξης υποστηλωμάτων ορθογωνικής διατομής μεγάλου λόγου πλευρών με ινοπλισμένα πολυμερή (FRP)

Σκορδά, Μαρία 02 March 2015 (has links)
Στην παρούσα μεταπτυχιακή διατριβή, γίνεται διερεύνηση της αποτελεσματικότητας περίσφιγξης ορθογωνικών υποστυλωμάτων με μεγάλο λόγο πλευρών, με εφαρμογή διπλής στρώσης σύνθετων υλικών από ίνες άνθρακα. Χρησιμοποιούνται και αξιολογούνται διαφορετικοί τρόποι εφαρμογής των σύνθετων υλικών (σε δοκίμια με λόγους πλευρών 3:1 και 4:1), όπως η επιπλέον τοποθέτηση αγκυρίων από ίνες άνθρακα τύπου θυσάνου, με διαφορετικές διαμέτρους και η εφαρμογή ενισχυτικού κονιάματος για μείωση του λόγου των πλευρών των δοκιμίων. Η παραπάνω αξιολόγηση γίνεται, τόσο σε πειραματικό, όσο και σε αναλυτικό επίπεδο. Η διεξαγωγή των εργασιών και της πειραματικής διαδικασίας, έλαβε χώρα στο Εργαστήριο Μηχανικής και Τεχνολογίας Υλικών του Τμήματος Πολιτικών Μηχανικών, του Πανεπιστημίου Πατρών. Πιο συγκεκριμένα, η παρούσα διατριβή αποτελείται από έξι κεφάλαια. Στο πρώτο κεφάλαιο, γίνεται εισαγωγή στα σύνθετα υλικά σχετικά με την εφαρμογή τους στο πεδίο των ενισχύσεων και τις ιδιότητες τους, καθώς και αναφορά των παγκόσμιων βιβλιογραφικών πηγών σχετικά με την περίσφιγξη υποστυλωμάτων με μεγάλο λόγο πλευρών με ινοπλισμένα πολυμερή. Το δεύτερο κεφάλαιο περιγράφει μερικά από τα πιο δημοφιλή αναλυτικά προσομοιώματα για περίσφιγξη οπλισμένου σκυροδέματος με σύνθετα υλικά και περιλαμβάνει την εφαρμογή ενός από αυτά, για προεκτίμηση του θλιπτικού φορτίου και της παραμόρφωσης αστοχίας, που αναμένεται να προκύψουν στα δοκίμια της παρούσας διατριβής. Στο τρίτο κεφάλαιο, παρουσιάζονται τα χαρακτηριστικά των υπό εξέταση δοκιμίων, οι εργασίες προετοιμασίας και ενίσχυσης τους, η πειραματική διαδικασία καθώς και η πειραματική διάταξη. Το τέταρτο κεφάλαιο, απαρτίζεται από την αναλυτική παρουσίαση των πειραματικών αποτελεσμάτων για όλες τις κατηγορίες δοκιμίων. Σχολιάζεται λεπτομερώς η συμπεριφορά του κάθε δοκιμίου ξεχωριστά και παρατίθενται τα αντίστοιχα διαγράμματα τάσεων-παραμορφώσεων και πίνακες τιμών θλιπτικών αντοχών, θλιπτικών φορτίων και παραμορφώσεων αστοχίας. Στο πέμπτο κεφάλαιο παρουσιάζονται οι συγκρίσεις των αποτελεσμάτων που προέκυψαν για όλα τα δοκίμια, τόσο από το αναλυτικό προσομοίωμα που χρησιμοποιήθηκε, όσο και από την πειραματική διαδικασία. Με αυτό τον τρόπο, γίνεται αξιολόγηση της αποτελεσματικότητας των διαφορετικών τρόπων εφαρμογής των ινοπλισμένων πολυμερών στα υποστυλώματα με μεγάλο λόγο πλευρών και της αξιοπιστίας εφαρμογής του αναλυτικού προσομοιώματος. Τέλος, το έκτο κεφάλαιο, περιλαμβάνει τα γενικά συμπεράσματα που προέκυψαν από την εκπόνηση της μεταπτυχιακής διατριβής, αλλά και προτάσεις για περαιτέρω έρευνα. / --
24

Microdrilling of Biocompatible Materials

Mohanty, Sankalp 2011 December 1900 (has links)
This research studies microdrilling of biocompatible materials including commercially pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-T6. A microdrilling technique that uses progressive pecking and micromist coolant is developed that allows drilling of 127 micrometers diameter microholes with an aspect ratio of 10:1. The drilling parameters, dominant wear pattern, hole positioning accuracy and effect of AlTiN tool coating are experimentally determined. The experimental data trend agrees with classical Taylor's machining equation. Despite of fragile and long microdrills, the progressive pecking cycle and micromist allowed deep hole drilling on all the tested materials. Drill wear is more pronounced at outer cutting edge due to higher cutting speeds. However, when drilling 316L stainless steel attrition wear at chisel edge is dominant. Hole quality degradation due to formation of built up edge at the drill tip is observed. Coated drill improves tool life by 122% and enhances hole quality when drilling 316L stainless steel. The hole positioning accuracy is improved by 115% and total hole diameter variation decreased from 0.11% to 0.003% per mm of drilling distance.
25

Modelagem hidro-mecânica do faturamento Hidráulico de rochas via elementos finitos Com elementos especiais de interface

SEIXAS, Marcela Seixas 31 August 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-02-13T15:32:26Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TeseDoutorado_MarcelaSeixas.pdf: 6064842 bytes, checksum: 5d148170b369d14be988b9c57683862a (MD5) / Made available in DSpace on 2017-02-13T15:32:26Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TeseDoutorado_MarcelaSeixas.pdf: 6064842 bytes, checksum: 5d148170b369d14be988b9c57683862a (MD5) Previous issue date: 2015-08-31 / CNPq / O interesse em estudos relacionados ao processo de fraturamento hidráulico vem aumentando, principalmente devido à exploração de reservatórios não convencionais, que se torna cada vez mais importante para a demanda de energia atual, com estimativas de grandes reservas distribuídas por vários países. A modelagem numérica de tal processo é um desafio, devido à complexidade da física envolvida. A interação entre propriedades mecânicas da rocha, tensões in situ, e heterogeneidades como fraturas naturais e planos de fraqueza é determinante na geometria da fratura induzida. Para resolver este tipo de problema acoplado, o método dos elementos finitos é amplamente utilizado e um dos mais versáteis. O presente estudo propõe uma técnica numérica denominada Fragmentação de Malha, que usa elementos finitos com elevada razão de aspecto (ou elementos especiais de interface), combinados com um modelo constitutivo baseado na mecânica do dano para reproduzir os efeitos do processo de formação de fraturas. Esta metodologia, com base na Aproximação Contínua de Descontinuidades Fortes, consiste em introduzir estes elementos de interface entre elementos regulares de uma malha de elementos finitos. Dentre as vantagens dessa técnica estão a sua facilidade de adaptação a programas convencionais de elementos finitos e o fato de não ser necessário o uso de algoritmos de construção de trajetória da descontinuidade. As aplicações apresentados neste trabalho mostram a capacidade da técnica proposta na modelagem do fraturamento hidráulico em reservatórios não convencionais. / The interest in studies related to the hydraulic fracturing process has increased over the last decade, mainly due to the exploitation of unconventional reservoirs, which is growing and becoming more important to the current energy demand, with the estimation of the existence of large reserves spread over several countries. Numerical modelling of such processes is a challenging task because of the complexity of the physics involved, and because of the structurally complicated geometry of the reservoir. The interaction between rock’s mechanical properties, insitu stresses, and heterogeneities such as natural fractures and weak bedding planes is determinant of the induced fracture geometry. To solve this kind of coupled hydromechanical problem, the Finite Elements Method is one of the most versatile and widely used. The present study propose a numerical technique called mesh fragmentation, that uses solid finite elements with high aspect ratio combining with a proper strain softening constitutive model to reproduce the effects of fractures formation process. This methodology, based on the Continuous Strong Discontinuous Approach, consists in introducing these high aspect ratio elements between regular elements of a finite element mesh. Some advantages of this technique are that it can be easily adapted to standard finite elements programs and no tracking algorithms are necessary to follow the evolution of the fracture. The case studies presented in this paper show the ability of the proposed technique to model hydraulic fracturing propagation in unconventional reservoirs.
26

Electrically Actuated Micropost Arrays for Droplet Manipulation

Gerson, Jonas Elliott 04 March 2013 (has links)
Precise manipulation of heterogeneous droplets on an open droplet microfluidic platform could have numerous practical advantages in a broad range of applications, from proton exchange membrane (PEM) fuel cells and microreactors, to medical diagnostic platforms capable of assaying complex biological analytes. Toward the aim of developing electrically controllable micropost arrays for use in open droplet manipulation, custom-designed titanium dioxide (TiO2)- loaded poly(dimethylsiloxane) (PDMS) micropost arrays were developed in this work and indirectly mechanically actuated by applying an electric field. Initial experiments explored the bulk properties of TiO2-loaded PDMS films, with scanning electron microscopy (SEM) confirming a uniform TiO2 particle distribution in the PDMS, and tensile testing of bulk films showing an inverse relationship between TiO2 % (w/w) and Young’s Modulus with the Young’s Moduli quantified as 4.22 ± 0.51 MPa for unloaded PDMS, 2.27 ± 0.18 MPa for 10 % (w/w) TiO2, and 1.39 ± 0.20 MPa for 20 % (w/w) TiO2. Following bulk material evaluation, soft lithography methods were developed to fabricate TiO2- loaded PDMS micropost arrays. Mathematical predictions were applied to design microposts of varying shape, length, and gap spacing to yield super-hydrophobic surfaces actuatable by an electric field. Visual inspection and optical microscopy of the resulting arrays confirmed a non- collapsed micropost geometry. Overall, round microposts that were 100, 200, and 300 μm in length, 15 μm in diameter, and spaced 50 μm apart were produced largely free of defects, and used in contact angle measurements and micropost deflection experiments. Droplet contact angles measured on the arrays remained above 120° indicating the arrays successfully provided super- hydrophobic surfaces. Individual microposts deflected most notably above an electric field strength of 520 kV/m (12.5 kV nominal voltage). The ability to mechanically deflect customized microposts using an electric field demonstrated by this work is promising for translating this technology to precise droplet manipulation applications. Indirect actuation of droplets could enable the manipulation of liquids with varying electrical properties, which is a limitation of current micropumping technologies. Once optimized, electrically actuated micropost arrays could significantly contribute to the micro- handling of heterogeneous, highly ionic, and/or deionized fluids. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-03-03 17:25:49.785
27

Electrostatically actuated LIGA-MEMS structures with high aspect ratio beams for RF applications and mechanical property extraction

2012 September 1900 (has links)
Microelectromechanical systems (MEMS) devices have been increasing in popularity for radio frequency (RF) and microwave communication systems due to the ability of MEMS devices to improve the performance of these circuits and systems. This interdisciplinary field combines the aspects of lithographic fabrication, mechanics, materials science, and RF/microwave circuit technology to produce moving structures with feature dimensions on the micron scale (micro-structures). MEMS technology has been used to improve switches, varactors, and inductors to name a few specific examples. Most MEMS devices have been fabricated using planar micro fabrication techniques that are similar to current integrated circuit (IC) fabrication techniques. These techniques limit the thickness of individual layers to a few microns, and restrict the structures to have planar and not vertical features. One micro fabrication technology that has not seen much application to microwave MEMS devices is LIGA, a German acronym for X-ray lithography, electroforming, and moulding. LIGA uses X-ray lithography to produce very tall structures (hundreds of microns) with excellent structural quality, and with lateral feature sizes smaller than a micron. These unique properties have led to an increased interest in LIGA for the development of high performance microwave devices, particularly as operating frequencies increase and physical device size decreases. Existing work using LIGA for microwave devices has concentrated on statically operating structures such as transmission lines, filters, couplers, and antennas. This research uses these unique fabrication capabilities to develop dynamically operating microwave devices with high frequency performance. This thesis documents the design, fabrication and testing of LIGA-MEMS variable capacitors that exploit the vertical dimension. Also included are methods to improve both the reliable fabrication and operation of these devices as well as material property characterization. Variable capacitors can be found in systems such as voltage-controlled oscillators, filters, impedance matching networks and phase shifters. Important figures-of-merit for these devices include the quality factor (Q), tuning range and tuning voltage. Two different types of variable capacitors are presented, a pull-away design and a design based on the principle of leveraged bending. The pull-away style variable capacitors were found to have high Q-factors, especially the devices fabricated using a thick gold device layer. As an example, the small gold half capacitance electrode design features a Q-factor of 95 at an operating frequency of 5.6 GHz and a tuning ratio of 1.36:1 with a tuning voltage range of 0 to 7.8 V. The design based on leveraged bending significantly improves the tuning ratio to a value of 1.9:1 while still maintaining a high Q-factor similar to those found in the pull-away style designs. A further increase in tuning ratio to a value of approximately 2.7:1 would be possible, based on simulated results, by simply changing the angle of the capacitance electrode in the layout. To improve device performance and fabrication reliability, modifications were made to both the fabrication process and the device layout. In the fabrication process the exposure step, electroplating step, and the etching process were modified to improve the quality of the resulting devices. In the layout, anti-stiction measures were introduced that reduce the contact area during collapse. To improve device characterization as well as the feedback link between simulation and fabrication, a set of test structures called VM-TEST was developed to accurately determine the important mechanical material properties of thick electroplated layers. These structures utilize the measurement of the pull-in voltage in cantilever and fixed-fixed beams, along with measured structure dimensions, to accurately extract the mechanical properties. Both nickel and gold test structures were analyzed with extracted Young’s modulus values of 186.2 and 60.8 GPa respectively. Also presented is a study of the gap shape in cantilever and fixed-fixed beams that significantly reduces the pull-in voltage while still maintaining a required maximum actuator displacement. It was shown that in the case of cantilever beam actuators, an approximately 40% reduction in pull-in voltage is possible, and in the case of fixed-fixed beam actuators, an approximately 30% reduction is possible by simply varying the shape of the gap between the beam and actuator electrode. These results can be used to significantly reduce the pull-in voltage of future designs. These promising results show that the LIGA fabrication process is capable of producing high performance dynamically operating RF MEMS devices, by exploiting the vertical dimension, not typically performed in most existing RF MEMS designs.
28

Modelagem numérica de juntas de argamassa em estruturas de alvenaria utilizando elementos finitos com alta razão de aspecto. / Numerical modeling of mortar joints in masonry structures using finite elements with high aspect ratio.

Tayer, André Del Negro 06 June 2018 (has links)
Este trabalho apresenta um novo modelo numérico para simulação de juntas de argamassa em estruturas de alvenaria no plano via método dos elementos finitos. Neste modelo, blocos de alvenaria e juntas de argamassa são representados separadamente. Elementos finitos com alta razão de aspecto são utilizados para representar as juntas de argamassa e são inseridos na malha de elementos finitos através de uma técnica de fragmentação de malha. A principal vantagem desta técnica consiste na utilização de modelos constitutivos contínuos para representar regiões descontínuas, uma vez que seu campo de deformações quando a altura do elemento de interface tende a zero é semelhante ao apresentado pela abordagem de aproximação contínua de descontinuidades fortes. Um modelo constitutivo contínuo baseado na mecânica do dano foi desenvolvido para representar o comportamento dos elementos de interface. Este modelo consegue representar a abertura e fechamento de fraturas, bem como o efeito de atrito em função da tensão de confinamento nas interfaces. Como o objetivo deste trabalho consiste na simulação da formação e propagação de fraturas ao longo das juntas de argamassa, comportamento elástico linear foi atribuindo aos elementos triangulares de três nós utilizados na discretização dos blocos de alvenaria. Vários exemplos numéricos são apresentados. Inicialmente, testes básicos são realizados para demonstrar as principais características do modelo quando submetido a carregamentos de tração, compressão e cisalhamento. Posteriormente, estruturas de alvenaria submetidas a carregamentos estáticos são analisadas e os resultados comparados com as respostas experimentais a fim de validar o modelo proposto. A técnica proposta se mostrou bastante promissora para simulação da formação e propagação de fratura em juntas de argamassa de estruturas de alvenaria. / This work presents a novel numerical model to simulate the failure process in masonry structures subjected to static loads via finite element method. Brick and mortar joints are modeled separately with their own constitutive equations. Interface finite element with high aspect ratio are used to simulate the mortar interface and inserted by the mesh fragmentation technique. The main advantage of this strategy is supported by the fact that, as the aspect ratio of a standard low-order solid finite element increases, the element strains also increase, approaching the same kinematics as the Continuum Strong Discontinuity Approach. A constitutive model was developed, based on the continuum damage mechanics, in order to represent the behavior of the interface finite elements. This model is able to simulate the creation and propagation of cracks, as well as, the frictional effects in dependence on stress confinement on the interfaces. Furthermore, as the objective of this work aims to simulate the failure in the mortar joints, the brick elements are assumed as linear elastic material. Three node standard triangular finite element are used to represent the bricks. Several numerical models are carried out. Initially, basics tests are show in order to demonstrate the main characteristics of the proposed model subjected to tensile, compression and shear loads. Subsequently, masonry structures are subjected to static loads are analyzed and the results compared with the experimental responses in order to validate the proposed model. This technique proved to be very promising for the simulation of failure onset and propagation in mortar joints of masonry structures.
29

Modeling the effects of natural fractures on the permeability of reservoir rocks /

Fabbri, Heber Agnelo Antonel January 2019 (has links)
Orientador: Osvaldo Luís Manzoli / Abstract: This work presents a numerical method based on Discrete Fracture Model (DFM) and the Finite Element Method (FEM), where the fractures are approximated by a reduced model. The flow along and across the fracture is described by a simplified set of equations considering both conductive fractures and barriers. The coupled hydromechanical model is composed of a linear poroelastic Biot medium and a nonlinear model based on damage mechanics for the fractures, which captures the nonlinear normal deformation and shear dilation according to the Barton-Bandis model. Both flow and geomechanical models are approximated using the finite element model. Fractures are explicitly represented by three-node standard finite elements with high aspect ratio (i.e. ratio between the largest and the smallest element dimensions) and appropriate constitutive laws. These interface high aspect ratio elements represent a regularization method which continuously approximate the discontinuous pressure and displacement fields on a narrow material band around the fracture. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. The efficiency of the proposed method is demonstrated through numerical examples, as well as the effects of fractures in the hydraulic properties of porous rocks and its dependency of the stress state. / Resumo: Este trabalho apresenta um método numérico baseado no Modelo de Fratura Discreta (MFD) e no Método dos Elementos Finitos (MEF), onde as fraturas são aproximadas por um modelo reduzido. O fluxo ao longo e através da fratura é descrito por um conjunto simplificado de equações, considerando tanto fraturas condutoras quanto barreiras. O modelo hidromecânico acoplado é composto por um meio poroelástico linear e um modelo não linear para fraturas, baseado na mecânica do dano e que captura a deformação normal não linear e a dilatância ao cisalhamento de acordo com o modelo de Barton-Bandis. Os modelos de fluxo e geomecânico são aproximados usando o método dos elementos finitos. As fraturas são explicitamente representadas por elementos finitos triangulares de três nós com elevada razão de aspecto (isto é, a razão entre a maior e a menor dimensão do elemento) e leis constitutivas apropriadas. Esses elementos de elevada razão de aspecto representam um método de regularização que aproxima de forma contínua os campos de pressão e deslocamento descontínuos em uma estreita faixa material ao redor da fratura. A formulação matemática completa é apresentada juntamente com o algoritmo sugerido para sua implementação numérica. A eficiência do método proposto é demonstrada através de exemplos numéricos, bem como os efeitos de fraturas nas propriedades hidráulicas de rochas porosas e sua dependência do estado de tensão. / Mestre
30

Dual-axis fluidic thrust vectoring of high-aspect ratio supersonic jets

Jegede, Olaseinde January 2016 (has links)
A dual-axis fluidic thrust vectoring (FTV) system is proposed where the supersonic propulsive jet of an aircraft is exhausted over a scarfed (swept), curved surface to produce flight control moments in both the pitch and yaw axes. This work contributes towards practical dual-axis FTV through expansion of fundamental curved-wall jet (CWJ) understanding, development of the novel Superimposed Characteristics technique for supersonic nozzle design, and performance evaluation of an experimental scarfed curved wall FTV configuration. Previous work has suggested that the use of a sheared exhaust velocity profile improves the attachment of supersonic jets to curved surfaces; however, evidence to support this is limited. To address this, an inviscid numerical CWJ model was developed using the two-dimensional method of characteristics. A major outcome is improved understanding of the effect of exhaust velocity profile on CWJ wave structure and subsequent jet attachment. A sheared velocity exhaust is shown to generate a wave structure that diminishes adverse streamwise pressure gradients within a supersonic curved-wall jet. This reduces the likelihood of boundary layer separation and as a result, a sheared exhaust velocity CWJ is expected to be less readily separated compared to other exhaust velocity profiles. A novel method termed Superimposed Characteristics was developed for the low-order design of supersonic nozzles with rectangular exits. The technique is capable of generating 3D nozzle geometries based on independent exit plane orientation and exhaust velocity distribution requirements. The Superimposed Characteristics method was used to design scarfed rectangular exit nozzles with sheared velocity exhaust profiles. These nozzles were then evaluated using finite volume computational methods and experimental methods. From the analysis, the Superimposed Characteristics method is shown to be valid for preliminary nozzle design. Experimental methods were used to study the on- and off-design attachment qualities of uniform and sheared velocity exhaust jets for a FTV configuration with an external curved wall termination angle of 90 degrees and scarf angle of 30 degrees. Experiments at the on-design nozzle pressure ratio (NPR) of 3.3 demonstrated pitch and yaw jet deflection angles of 78 degrees and 23 degrees respectively for the uniform exhaust velocity CWJ. The sheared exhaust velocity CWJ achieved lower pitch and yaw deflection angles of 34 degrees and 14 degrees respectively at the same on-design NPR. The lower jet deflection angles observed for sheared exhaust velocity jets is inconsistent with the CWJ model prediction of reduced adverse streamwise pressure gradients; however, there was insufficient experimental instrumentation to identify the cause. In the off-design experiments, the uniform exhaust velocity CWJ was observed to detach at an NPR of 3.6, whilst the sheared exhaust velocity CWJ remained attached at NPRs in excess of 4. The capability of sheared exhaust velocity CWJs to remain attached at higher NPRs is consistent with the analytical theory and the CWJ model predictions. An actuation study was carried out to achieve controlled jet detachment using secondary blowing injected normal to the curved wall. Full separation of the wall jets was achieved downstream of the injection point. This provided vectoring angles of more than 20 degrees in pitch and 10 degrees in yaw, exceeding expected vectoring requirements for practical aircraft control. At the on-design NPR, the uniform and sheared exhaust velocity jets required secondary blowing mass flow rates of 2.1% and 3.8% of the primary mass flow respectively to achieve full separation.

Page generated in 0.0883 seconds