• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 11
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 109
  • 109
  • 109
  • 35
  • 25
  • 24
  • 20
  • 19
  • 19
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A NEW INDEPENDENCE MEASURE AND ITS APPLICATIONS IN HIGH DIMENSIONAL DATA ANALYSIS

Ke, Chenlu 01 January 2019 (has links)
This dissertation has three consecutive topics. First, we propose a novel class of independence measures for testing independence between two random vectors based on the discrepancy between the conditional and the marginal characteristic functions. If one of the variables is categorical, our asymmetric index extends the typical ANOVA to a kernel ANOVA that can test a more general hypothesis of equal distributions among groups. The index is also applicable when both variables are continuous. Second, we develop a sufficient variable selection procedure based on the new measure in a large p small n setting. Our approach incorporates marginal information between each predictor and the response as well as joint information among predictors. As a result, our method is more capable of selecting all truly active variables than marginal selection methods. Furthermore, our procedure can handle both continuous and discrete responses with mixed-type predictors. We establish the sure screening property of the proposed approach under mild conditions. Third, we focus on a model-free sufficient dimension reduction approach using the new measure. Our method does not require strong assumptions on predictors and responses. An algorithm is developed to find dimension reduction directions using sequential quadratic programming. We illustrate the advantages of our new measure and its two applications in high dimensional data analysis by numerical studies across a variety of settings.
72

Some questions in risk management and high-dimensional data analysis

Wang, Ruodu 04 May 2012 (has links)
This thesis addresses three topics in the area of statistics and probability, with applications in risk management. First, for the testing problems in the high-dimensional (HD) data analysis, we present a novel method to formulate empirical likelihood tests and jackknife empirical likelihood tests by splitting the sample into subgroups. New tests are constructed to test the equality of two HD means, the coefficient in the HD linear models and the HD covariance matrices. Second, we propose jackknife empirical likelihood methods to formulate interval estimations for important quantities in actuarial science and risk management, such as the risk-distortion measures, Spearman's rho and parametric copulas. Lastly, we introduce the theory of completely mixable (CM) distributions. We give properties of the CM distributions, show that a few classes of distributions are CM and use the new technique to find the bounds for the sum of individual risks with given marginal distributions but unspecific dependence structure. The result partially solves a problem that had been a challenge for decades, and directly leads to the bounds on quantities of interest in risk management, such as the variance, the stop-loss premium, the price of the European options and the Value-at-Risk associated with a joint portfolio.
73

Analysis of high dimensional repeated measures designs: The one- and two-sample test statistics / Entwicklung von Verfahren zur Analyse von hochdimensionalen Daten mit Messwiederholungen

Ahmad, Muhammad Rauf 07 July 2008 (has links)
No description available.
74

Integration of computational methods and visual analytics for large-scale high-dimensional data

Choo, Jae gul 20 September 2013 (has links)
With the increasing amount of collected data, large-scale high-dimensional data analysis is becoming essential in many areas. These data can be analyzed either by using fully computational methods or by leveraging human capabilities via interactive visualization. However, each method has its drawbacks. While a fully computational method can deal with large amounts of data, it lacks depth in its understanding of the data, which is critical to the analysis. With the interactive visualization method, the user can give a deeper insight on the data but suffers when large amounts of data need to be analyzed. Even with an apparent need for these two approaches to be integrated, little progress has been made. As ways to tackle this problem, computational methods have to be re-designed both theoretically and algorithmically, and the visual analytics system has to expose these computational methods to users so that they can choose the proper algorithms and settings. To achieve an appropriate integration between computational methods and visual analytics, the thesis focuses on essential computational methods for visualization, such as dimension reduction and clustering, and it presents fundamental development of computational methods as well as visual analytic systems involving newly developed methods. The contributions of the thesis include (1) the two-stage dimension reduction framework that better handles significant information loss in visualization of high-dimensional data, (2) efficient parametric updating of computational methods for fast and smooth user interactions, and (3) an iteration-wise integration framework of computational methods in real-time visual analytics. The latter parts of the thesis focus on the development of visual analytics systems involving the presented computational methods, such as (1) Testbed: an interactive visual testbed system for various dimension reduction and clustering methods, (2) iVisClassifier: an interactive visual classification system using supervised dimension reduction, and (3) VisIRR: an interactive visual information retrieval and recommender system for large-scale document data.
75

Maximum-likelihood kernel density estimation in high-dimensional feature spaces /| C.M. van der Walt

Van der Walt, Christiaan Maarten January 2014 (has links)
With the advent of the internet and advances in computing power, the collection of very large high-dimensional datasets has become feasible { understanding and modelling high-dimensional data has thus become a crucial activity, especially in the field of pattern recognition. Since non-parametric density estimators are data-driven and do not require or impose a pre-defined probability density function on data, they are very powerful tools for probabilistic data modelling and analysis. Conventional non-parametric density estimation methods, however, originated from the field of statistics and were not originally intended to perform density estimation in high-dimensional features spaces { as is often encountered in real-world pattern recognition tasks. Therefore we address the fundamental problem of non-parametric density estimation in high-dimensional feature spaces in this study. Recent advances in maximum-likelihood (ML) kernel density estimation have shown that kernel density estimators hold much promise for estimating nonparametric probability density functions in high-dimensional feature spaces. We therefore derive two new iterative kernel bandwidth estimators from the maximum-likelihood (ML) leave one-out objective function and also introduce a new non-iterative kernel bandwidth estimator (based on the theoretical bounds of the ML bandwidths) for the purpose of bandwidth initialisation. We name the iterative kernel bandwidth estimators the minimum leave-one-out entropy (MLE) and global MLE estimators, and name the non-iterative kernel bandwidth estimator the MLE rule-of-thumb estimator. We compare the performance of the MLE rule-of-thumb estimator and conventional kernel density estimators on artificial data with data properties that are varied in a controlled fashion and on a number of representative real-world pattern recognition tasks, to gain a better understanding of the behaviour of these estimators in high-dimensional spaces and to determine whether these estimators are suitable for initialising the bandwidths of iterative ML bandwidth estimators in high dimensions. We find that there are several regularities in the relative performance of conventional kernel density estimators across different tasks and dimensionalities and that the Silverman rule-of-thumb bandwidth estimator performs reliably across most tasks and dimensionalities of the pattern recognition datasets considered, even in high-dimensional feature spaces. Based on this empirical evidence and the intuitive theoretical motivation that the Silverman estimator optimises the asymptotic mean integrated squared error (assuming a Gaussian reference distribution), we select this estimator to initialise the bandwidths of the iterative ML kernel bandwidth estimators compared in our simulation studies. We then perform a comparative simulation study of the newly introduced iterative MLE estimators and other state-of-the-art iterative ML estimators on a number of artificial and real-world high-dimensional pattern recognition tasks. We illustrate with artificial data (guided by theoretical motivations) under what conditions certain estimators should be preferred and we empirically confirm on real-world data that no estimator performs optimally on all tasks and that the optimal estimator depends on the properties of the underlying density function being estimated. We also observe an interesting case of the bias-variance trade-off where ML estimators with fewer parameters than the MLE estimator perform exceptionally well on a wide variety of tasks; however, for the cases where these estimators do not perform well, the MLE estimator generally performs well. The newly introduced MLE kernel bandwidth estimators prove to be a useful contribution to the field of pattern recognition, since they perform optimally on a number of real-world pattern recognition tasks investigated and provide researchers and practitioners with two alternative estimators to employ for the task of kernel density estimation. / PhD (Information Technology), North-West University, Vaal Triangle Campus, 2014
76

Analyse de données de cytometrie de flux pour un grand nombre d'échantillons / Automated flow cytometric analysis across a large number of samples

Chen, Xiaoyi 06 October 2015 (has links)
Cette thèse a conduit à la mise au point de deux nouvelles approches statistiques pour l'identification automatique de populations cellulaires en cytometrie de flux multiparamétrique, et ceci pour le traitement d'un grand nombre d'échantillons, chaque échantillon étant prélevé sur un donneur particulier. Ces deux approches répondent à des besoins exprimés dans le cadre du projet Labex «Milieu Intérieur». Dix panels cytométriques de 8 marqueurs ont été sélectionnés pour la quantification des populations principales et secondaires présentes dans le sang périphérique. Sur la base de ces panels, les données ont été acquises et analysées sur une cohorte de 1000 donneurs sains.Tout d'abord, nous avons recherché une quantification robuste des principales composantes cellulaires du système immunitaire. Nous décrivons une procédure computationnelle, appelée FlowGM, qui minimise l'intervention de l'utilisateur. Le cœur statistique est fondé sur le modèle classique de mélange de lois gaussiennes. Ce modèle est tout d'abord utilisé pour obtenir une classification initiale, le nombre de classes étant déterminé par le critère d'information BIC. Après cela, une méta-classification, qui consiste en l'étiquetage des classes et la fusion de celles qui ont la même étiquette au regard de la référence, a permis l'identification automatique de 24 populations cellulaires sur quatre panels. Ces identifications ont ensuite été intégrées dans les fichiers de cytométrie de flux standard (FCS), permettant ainsi la comparaison avec l'analyse manuelle opérée par les experts. Nous montrons que la qualité est similaire entre FlowGM et l'analyse manuelle classique pour les lymphocytes, mais notamment que FlowGM montre une meilleure discrimination des sous-populations de monocytes et de cellules dendritiques (DC), qui sont difficiles à obtenir manuellement. FlowGM fournit ainsi une analyse rapide de phénotypes cellulaires et se prête à des études de cohortes.A des fins d'évaluation, de diagnostic et de recherche, une analyse tenant compte de l'influence de facteurs, comme par exemple les effets du protocole, l'effet de l'âge et du sexe, a été menée. Dans le contexte du projet MI, les 1000 donneurs sains ont été stratifiés selon le sexe et l'âge. Les résultats de l'analyse quantitative faite avec FlowGM ont été jugés concordants avec l'analyse manuelle qui est considérée comme l'état de l'art. On note surtout une augmentation de la précision pour les populations CD16+ et CDC1, où les sous-populations CD14loCD16hi et HLADRhi CDC1 ont été systématiquement identifiées. Nous démontrons que les effectifs de ces deux populations présentent une corrélation significative avec l'âge. En ce qui concerne les populations qui sont connues pour être associées à l'âge, un modèle de régression linéaire multiple a été considéré qui fournit un coefficient de régression renforcé. Ces résultats établissent une base efficace pour l'évaluation de notre procédure FlowGM.Lors de l'utilisation de FlowGM pour la caractérisation détaillée de certaines sous-populations présentant de fortes variations au travers des différents échantillons, par exemple les cellules T, nous avons constaté que FlowGM était en difficulté. En effet, dans ce cas, l'algorithme EM classique initialisé avec la classification de l'échantillon de référence est insuffisant pour garantir l'alignement et donc l'identification des différentes classes entre tous échantillons. Nous avons donc amélioré FlowGM en une nouvelle procédure FlowGMP. Pour ce faire, nous avens ajouté au modèle de mélange, une distribution a priori sur les paramètres de composantes, conduisant à un algorithme EM contraint. Enfin, l'évaluation de FlowGMP sur un panel difficile de cellules T a été réalisée, en effectuant une comparaison avec l'analyse manuelle. Cette comparaison montre que notre procédure Bayésienne fournit une identification fiable et efficace des onze sous-populations de cellules T à travers un grand nombre d'échantillons. / In the course of my Ph.D. work, I have developed and applied two new computational approaches for automatic identification of cell populations in multi-parameter flow cytometry across a large number of samples. Both approaches were motivated and taken by the LabEX "Milieu Intérieur" study (hereafter MI study). In this project, ten 8-color flow cytometry panels were standardized for assessment of the major and minor cell populations present in peripheral whole blood, and data were collected and analyzed from 1,000 cohorts of healthy donors.First, we aim at robust characterization of major cellular components of the immune system. We report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM) - based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor, by which we mean labeling clusters and merging those with the same label in a pre-selected representative donor, permitted automated identification of 24 cell populations across four panels. Cluster labels were then integrated into Flow Cytometry Standard (FCS) files, thus permitting comparisons to human expert manual analysis. We show that cell numbers and coefficient of variation (CV) are similar between FlowGM and conventional manual analysis of lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid, high-dimensional analysis of cell phenotypes and is amenable to cohort studies.After having cell counts across a large number of cohort donors, some further analysis (for example, the agreement with other methods, the age and gender effect, etc.) are required naturally for the purpose of comprehensive evaluation, diagnosis and discovery. In the context of the MI project, the 1,000 healthy donors were stratified across gender (50% women and 50% men) and age (20-69 years of age). Analysis was streamlined using our established approach FlowGM, the results were highly concordant with the state-of-art gold standard manual gating. More important, further precision of the CD16+ monocytes and cDC1 population was achieved using FlowGM, CD14loCD16hi monocytes and HLADRhi cDC1 cells were consistently identified. We demonstrate that the counts of these two populations show a significant correlation with age. As for the cell populations that are well-known to be related to age, a multiple linear regression model was considered, and it is shown that our results provided higher regression coefficient. These findings establish a strong foundation for comprehensive evaluation of our previous work.When extending this FlowGM method for detailed characterization of certain subpopulations where more variations are revealed across a large number of samples, for example the T cells, we find that the conventional EM algorithm initiated with reference clustering is insufficient to guarantee the alignment of clusters between all samples due to the presence of technical and biological variations. We then improved FlowGM and presented FlowGMP pipeline to address this specific panel. We introduce a Bayesian mixture model by assuming a prior distribution of component parameters and derive a penalized EM algorithm. Finally the performance of FlowGMP on this difficult T cell panel with a comparison between automated and manual analysis shows that our method provides a reliable and efficient identification of eleven T cell subpopulations across a large number of samples.
77

The Analysis of Big Data on Cites and Regions - Some Computational and Statistical Challenges

Schintler, Laurie A., Fischer, Manfred M. 28 October 2018 (has links) (PDF)
Big Data on cities and regions bring new opportunities and challenges to data analysts and city planners. On the one side, they hold great promise to combine increasingly detailed data for each citizen with critical infrastructures to plan, govern and manage cities and regions, improve their sustainability, optimize processes and maximize the provision of public and private services. On the other side, the massive sample size and high-dimensionality of Big Data and their geo-temporal character introduce unique computational and statistical challenges. This chapter provides overviews on the salient characteristics of Big Data and how these features impact on paradigm change of data management and analysis, and also on the computing environment. / Series: Working Papers in Regional Science
78

Description et sélection de données en grande dimension / Description and selection of high-dimensional data

Beal, Aurélie 24 February 2015 (has links)
L'évolution des technologies actuelles permet de traiter un grand nombre d'expériences (ou de simulations) et d'envisager un nombre important de paramètres. Cette situation conduit à des matrices de grande, voire très grande, dimension et nécessite le développement de nouveaux outils pour évaluer et visualiser ces données et, le cas échéant, en réduire la dimension. L'évaluation de la qualité de l'information apportée par l'ensemble de points constituant une base de données ou un plan d'expériences peut se faire au travers de critères basés sur des calculs de distance, qui renseigneront sur l'uniformité de la répartition dans l'espace multidimensionnel. Parmi les méthodes de visualisation, l'Analyse en Composantes Curvilignes a l'avantage de projeter des données en grande dimension dans un espace bidimensionnel en préservant la topologie locale, ce qui peut aider à détecter des amas de points ou des zones lacunaires. La réduction de dimension s'appuie sur une sélection judicieuse de sous-ensembles de points ou de variables, via des algorithmes. Les performances de ces méthodes ont été évaluées sur des cas d'étude issus des études QSAR, de la spectroscopie et de la simulation numérique. / Technological progress has now made many experiments (or simulations) possible, along with taking into account a large number of parameters, which result in (very) high-dimensional matrix requiring the development of new tools to assess and visualize the data and, if necessary, to reduce the dimension. The quality of the information provided by all points of a database or an experimental design can be assessed using criteria based on distances that will inform about the uniformity of repartition in a multidimensional space. Among the visualization methods, Curvilinear Component Analysis has the advantage of projecting high-dimensional data in a two-dimensional space with respect to the local topology. This also enables the detection of clusters of points or gaps. The dimensional reduction is based on a judicious selection of subsets of points or variables, via accurate algorithms. The performance of these methods was assessed on case studies of QSAR, spectroscopy and numeric simulation.
79

Generation of semantic layouts for interactive multidimensional data visualization / Geração de layouts semânticos para a visualização interativa de dados multidimensionais

Erick Mauricio Gomez Nieto 24 February 2017 (has links)
Visualization methods make use of interactive graphical representations embedded on a display area in order to enable data exploration and analysis. These typically rely on geometric primitives for representing data or building more sophisticated representations to assist the visual analysis process. One of the most challenging tasks in this context is to determinate an optimal layout of these primitives which turns out to be effective and informative. Existing algorithms for building layouts from geometric primitives are typically designed to cope with requirements such as orthogonal alignment, overlap removal, optimal area usage, hierarchical organization, dynamic update among others. However, most techniques are able to tackle just a few of those requirements simultaneously, impairing their use and flexibility. In this dissertation, we propose a set of approaches for building layouts from geometric primitives that concurrently addresses a wider range of requirements. Relying on multidimensional projection and optimization formulations, our methods arrange geometric objects in the visual space so as to generate well-structured layouts that preserve the semantic relation among objects while still making an efficient use of display area. A comprehensive set of quantitative comparisons against existing methods for layout generation and applications on text, image, and video data set visualization prove the effectiveness of our approaches. / Métodos de visualização fazem uso de representações gráficas interativas embutidas em uma área de exibição para exploração e análise de dados. Esses recursos visuais usam primitivas geométricas para representar dados ou compor representações mais sofisticadas que facilitem a extração visual de informações. Uma das tarefas mais desafiadoras é determinar um layout ótimo visando explorar suas capacidades para transmitir informação dentro de uma determinada visualização. Os algoritmos existentes para construir layouts a partir de primitivas geométricas são tipicamente projetados para lidar com requisitos como alinhamento ortogonal, remoção de sobreposição, área usada, organização hierárquica, atualização dinâmica entre outros. No entanto, a maioria das técnicas são capazes de lidar com apenas alguns desses requerimentos simultaneamente, prejudicando sua utilização e flexibilidade. Nesta tese, propomos um conjunto de abordagens para construir layouts a partir de primitivas geométricas que simultaneamente lidam com uma gama mais ampla de requerimentos. Baseando-se em projeções multidimensionais e formulações de otimização, os nossos métodos organizam objetos geométricos no espaço visual para gerar layouts bem estruturados que preservam a relação semântica entre objetos enquanto ainda fazem um uso eficiente da área de exibição. Um conjunto detalhado de comparações quantitativas com métodos existentes para a geração de layouts e aplicações em visualização de conjunto de dados de texto, imagem e vídeo comprova a eficácia das técnicas propostas.
80

Sélection de modèles parcimonieux pour l’apprentissage statistique en grande dimension / Model selection for sparse high-dimensional learning

Mattei, Pierre-Alexandre 26 October 2017 (has links)
Le déferlement numérique qui caractérise l’ère scientifique moderne a entraîné l’apparition de nouveaux types de données partageant une démesure commune : l’acquisition simultanée et rapide d’un très grand nombre de quantités observables. Qu’elles proviennent de puces ADN, de spectromètres de masse ou d’imagerie par résonance nucléaire, ces bases de données, qualifiées de données de grande dimension, sont désormais omniprésentes, tant dans le monde scientifique que technologique. Le traitement de ces données de grande dimension nécessite un renouvellement profond de l’arsenal statistique traditionnel, qui se trouve inadapté à ce nouveau cadre, notamment en raison du très grand nombre de variables impliquées. En effet, confrontée aux cas impliquant un plus grand nombre de variables que d’observations, une grande partie des techniques statistiques classiques est incapable de donner des résultats satisfaisants. Dans un premier temps, nous introduisons les problèmes statistiques inhérents aux modelés de données de grande dimension. Plusieurs solutions classiques sont détaillées et nous motivons le choix de l’approche empruntée au cours de cette thèse : le paradigme bayésien de sélection de modèles. Ce dernier fait ensuite l’objet d’une revue de littérature détaillée, en insistant sur plusieurs développements récents. Viennent ensuite trois chapitres de contributions nouvelles à la sélection de modèles en grande dimension. En premier lieu, nous présentons un nouvel algorithme pour la régression linéaire bayésienne parcimonieuse en grande dimension, dont les performances sont très bonnes, tant sur données réelles que simulées. Une nouvelle base de données de régression linéaire est également introduite : il s’agit de prédire la fréquentation du musée d’Orsay à l’aide de données vélibs. Ensuite, nous nous penchons sur le problème de la sélection de modelés pour l’analyse en composantes principales (ACP). En nous basant sur un résultat théorique nouveau, nous effectuons les premiers calculs exacts de vraisemblance marginale pour ce modelé. Cela nous permet de proposer deux nouveaux algorithmes pour l’ACP parcimonieuse, un premier, appelé GSPPCA, permettant d’effectuer de la sélection de variables, et un second, appelé NGPPCA, permettant d’estimer la dimension intrinsèque de données de grande dimension. Les performances empiriques de ces deux techniques sont extrêmement compétitives. Dans le cadre de données d’expression ADN notamment, l’approche de sélection de variables proposée permet de déceler sans supervision des ensembles de gènes particulièrement pertinents. / The numerical surge that characterizes the modern scientific era led to the rise of new kinds of data united in one common immoderation: the simultaneous acquisition of a large number of measurable quantities. Whether coming from DNA microarrays, mass spectrometers, or nuclear magnetic resonance, these data, usually called high-dimensional, are now ubiquitous in scientific and technological worlds. Processing these data calls for an important renewal of the traditional statistical toolset, unfit for such frameworks that involve a large number of variables. Indeed, when the number of variables exceeds the number of observations, most traditional statistics becomes inefficient. First, we give a brief overview of the statistical issues that arise with high-dimensional data. Several popular solutions are presented, and we present some arguments in favor of the method utilized and advocated in this thesis: Bayesian model uncertainty. This chosen framework is the subject of a detailed review that insists on several recent developments. After these surveys come three original contributions to high-dimensional model selection. A new algorithm for high-dimensional sparse regression called SpinyReg is presented. It compares favorably to state-of-the-art methods on both real and synthetic data sets. A new data set for high-dimensional regression is also described: it involves predicting the number of visitors in the Orsay museum in Paris using bike-sharing data. We focus next on model selection for high-dimensional principal component analysis (PCA). Using a new theoretical result, we derive the first closed-form expression of the marginal likelihood of a PCA model. This allows us to propose two algorithms for model selection in PCA. A first one called globally sparse probabilistic PCA (GSPPCA) that allows to perform scalable variable selection, and a second one called normal-gamma probabilistic PCA (NGPPCA) that estimates the intrinsic dimensionality of a high-dimensional data set. Both methods are competitive with other popular approaches. In particular, using unlabeled DNA microarray data, GSPPCA is able to select genes that are more biologically relevant than several popular approaches.

Page generated in 0.1211 seconds