• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • Tagged with
  • 18
  • 16
  • 16
  • 12
  • 10
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Alguns resultados tipo-Bernstein em variedades semi-riemannianas / Some Bernstein-type results in semi-riemannian manifolds

Ulisses Lima Parente 05 May 2011 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Nesta tese, estudamos hipersuperfÃcies de tipo-espaÃo completas imersas em variedades semi-Riemannianas, satisfazendo alguma condiÃÃo sobre suas curvaturas de ordem superior, a fim de obtermos resultados tipo-Bernstein. As ferramentas analÃticas que utilizamos sÃo algumas versÃes do princÃpio do mÃximo. No caso em que o ambiente à um espaÃo-tempo de Robertson-Walker generalizado satisfazendo a condiÃÃo forte de convergÃncia nula, obtemos novas caracterizaÃÃes de hipersuperfÃcies tipo-espaÃo totalmente geodÃsicas. AlÃm disso, obtemos uma estimativa inferior do Ãndice mÃnimo de nulidade relativa quando a hipersuperfÃcie tipo-espaÃo à r-mÃxima ou quando existem duas curvaturas mÃdias de ordem superior consecutivas que nÃo mudam de sinal. TambÃm obtemos resultados de rigidez e novas caracterizaÃÃes de hipersuperfÃcies totalmente umbÃlicas, supondo que estas possuem alguma curvatura de ordem superior constante e que o ambiente à um espaÃo-tempo de Robertson-Walker satisfazendo a condiÃÃo de convergÃncia nula. Aplicamos tais resultados aos espaÃo de de Sitter e anti-de Sitter. Finalmente, provamos um teorema tipo-Bernstein para hipersuperfÃcies completas, com curvatura mÃdia constante, imersas em um produto riemanniano. / In this thesis, we study complete space-like hypersurfaces immersed in semi-Riemannian manifolds, satisfying some conditions on their higher-order mean curvatures in order to get Bernstein-type results. Analytical tools we use are some versions of the maximum principle. When the ambient space is a generalized Robertson-Walker spacetime which is supposed to obey the strong null convergence condition, we establish new characterizations of totally geodesic spacelike hypersurfaces. Furthermore, we obtain a lower estimate the minimum index of relative nullity when the space-like hypersurface is r-maximal, or when there are two consecutive higher-order mean curvatures that do not change sin. We also obtain rigidity results and new characterizations of totally umbilical hypersurfaces, assuming they have some constant higher-order mean curvature, and that the ambient space is a spacetime Robertson-Walker obeying the null convergence condition. These results are applied to the de Sitter and anti-de Sitter spaces. Finally, we prove a Bernstein-type theorem for constant mean curvature complete hypersurfaces immersed in a riemannian product.
12

Sobre H-hipersuperfÃcies compactas de N X R / H-hypersurfaces of N x R

Heloisa FrazÃo da Silva 13 July 2011 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Consideraremos F(N x R) o conjunto das H-hipersuperfÃcies fechadas M tal que M &#1057; N x R, onde N Ã uma variedade riemanniana simplesmente conexa com curvatura seccional limitada superiormente (KN &#8804; -k2 < 0). A partir daÃ, com o auxÃlio do Teorema de ComparaÃÃo do Hessiano mostraremos algumas desigualdades para estas subvariedades M &#1057; N x R com curvatura mÃdia constante HM. / Consider F(N x R) the set of closed hypersurfaces M such that M C N x R) where N is a simply connected riemannian manifold with sectional curvature bounded above (KN &#8804; -k2 < 0). Thereafter, with the aid of Hessian Comparison Theorem we show some inequalities for these submanifolds M &#1057; N x R with constant mean curvature HM.
13

GrÃficos conformes com curvatura de ordem superior prescrita / Conformal killing graphs with prescribed higher order curvature

Francisco Josà de Andrade 11 January 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / O principal objetivo de nossa investigÃÃo à determinar condiÃÃes para a existÃncia de hipersuperfÃcies fechadas com curvatura prescrita em produtoswarped e, mais geralmente, em variedades dotadas de um campo de Killing conforme. Empreendemos esta anÃlise em duas etapas, a primeira das quais à o estabelecimento de estimativas a priori atà segunda ordem de uma funÃÃo cujo grÃfico satisfaz a equaÃÃo diferencial correspondente a condiÃÃo de curvatura prescrita. A segunda parte consiste em empregar uma variante adequada da teoria do grau ao problema que consideramos. / The main purpose of our investigation is to determine conditions for the existence of closed hypersurface with prescribed curvature in products warped and, more usually, in manifolds endowed with conformal Killing vector fields. We undertook this analysis in two stages, the first one being the establishment of estimates a priori up to second order of a function whose graph satisfies the corresponding differential equation. The second part consists of using an appropriate variant of the theory of the degree to the problem that we considered.
14

CaracterizaÃÃo de hipersuperfÃcies tipo espaÃo com curvatura mÃdia constante e duas curvaturas principais no espaÃo anti de Sitter / Caracterization of spacelike hypersurfaces with constant mean curvature and two principal curvatures in anti de Sitter space

Wanderley de Oliveira Pereira 31 July 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Este trabalho tem como objetivo fornecer uma caracterizaÃÃo de hipersuperfÃcies tipo espaÃo completas no espaÃo anti de Sitter, tais como os cilindros hiperbÃlicos, sob a hipÃtese de curvatura mÃdia constante e duas curvaturas principais distintas. No caso em que umas das curvaturas principais à simples, à adicionada uma condiÃÃo sobre tais curvaturas. A caracterizaÃÃo aqui sugerida, teve como refrÃncia principal o trabalho de B. Yang e X. Liu, que dà uma resposta positiva à conjectura de L. F. Cao e G. Wei sobre hipersuperfÃcies tipo espaÃo em tais condiÃÃes. Para a realizaÃÃo do trabalho, foi utilizada uma fÃrmula do tipo Simons juntamente com o PrincÃpio do MÃximo Generalizado (Omori-Yau). / The aim of this work is to provide a characterization complete spacelike hypersurfaces in anti de Sitter space, such as hyperbolic cylinders, under the assumption constant mean curvature and two distinct principal curvatures. In the case that one of the principal curvatures is simple, a condition is added on the curvature. The characterization suggested here had as main reference the work of B.Yang and X. Liu, giving a positive answer to the L. F. Cao and G. Weiâs conjecture on spacelike hypersurfaces in such conditions. To carry out the work, we used a formula of type Simons along with the Generalized Maximum Principle (Omori-Yau).
15

Sobre a geometria de imersÃes isomÃtricas em variedades de Lorentz conformemente estacionÃrias / On the geometry of varieties of isometric immersions in Lorents stationary conformally

Marco Antonio LÃzaro VelÃsquez 03 December 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Nesta tese estudamos vÃrios aspectos da geometria de variedades de Lorentz conformemente estacionÃrias e, particularmente, de espaÃos generalizados de Robertson-Walker, sob a presenÃa de um campo vetorial conforme fechado. Inicialmente, nÃs desenvolvemos um estudo sobre a r-estabilidade e a r-estabilidade forte de hipersuperfÃcies tipo-espaÃo fechadas em ambientes conformemente estacionÃrios de curvatura seccional constante; mais precisamente,nÃs obtemos uma caracterizaÃÃo das hipersuperfÃcies r-estÃveis pelo primeiro autovalor de um certo operador elÃptico naturalmente associado à sua r-Ãsima curvatura, bem como classificamos as hipersuperfÃcies fortemente r-estÃveis por meio de uma condiÃÃo adequada sobre o fator conforme do campo conforme do ambiente. Em seguida, estabelecemos teoremas gerais tipo-Bernstein para hipersuperfÃcies tipo-espaÃo em variedades de Lorentz conformemente estacionÃrias, um dos quais nÃo exige que a hipersuperfÃcie possua curvatura mÃdia constante. Finalmente, estendemos para variedades de Lorentz conformemente estacionÃrias um resultado de J. Simons sobre a minimalidade de certos cones em espaÃos Euclidianos, e aplicamos este resultado para construir subvariedades mÃnimas completas e nÃo-compactas no espaÃo de de Sitter e no espaÃo anti-de Sitter. / In this thesis we study several aspects of the geometry of conformally stationary Lorentz manifolds and, more particularly, of generalized Robertson-Walker spaces, under the presence of a closed conformal vector field. We initiate by focusing our study on the r-stability and on the strong r-stability of closed spacelike hypersurfaces of conformally stationary ambient spaces of constant sectional curvature; more precisely, we obtain a characterization of the r-stable ones by means of the first eigenvalue of a suitable elliptic operator naturally associated to its r-th mean curvature, as well classify the strongly r-stable ones by means of an appropriate condition on the conformal factor of the conformal vector field on the ambient space. Following,we establish general Bernstein-type theorems for spacelike hypersurfaces of conformally stationary Lorentz manifolds, one of which does not require the hypersurface to be of constant mean curvature. We end by extending, to conformally stationary Lorentz manifolds, a result of J. Simons on the minimality of certain cones in Euclidean spaces, and apply this result to build complete, non-compact minimal submanifolds in the de Sitter space and in the anti-de Sitter space.
16

HipersuperfÃcies com bordo livre e rigidez de superfÃcies mÃnimas / Hypersurfaces with free board and rigidity of minimal surfaces

CÃcero Tiarlos Nogueira Cruz 27 February 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Nesta tese, provamos estimativas para o volume e Ãrea do bordo de hipersuperficies estÃveis &#8721;n-1 com invariante de Yamabe nÃo positivo satisfazendo à condiÃÃo de bordo livre em uma variedade Riemanniana de dimensÃo n com limitaÃÃo na curvatura escalar e curvatura mÃdia do bordo. Supondo ainda que &#8721; à localmente minimizante de volume em uma variedade M com curvatura escalar limitada inferiormente por uma constante nÃo positiva, concluÃmos que localmente M divide-se ao longo &#8721; como (-&#1028;, &#1028;)x &#8721;, para algum &#1028; > 0. No caso em que &#8721; localmente minimiza um funcional adequado inspirado pelo trabalho de Yau (2001), uma vizinhanÃa de &#8721; em M à isomÃtrica a ((-&#1028;, &#1028;) x &#8721;, dt2 +e2tg), onde g à Ricci plana. Na segunda parte, estudamos outro fenÃmeno de rigidez pela curvatura escalar adaptando a tÃcnica desenvolvida por MÃximo e Nunes (2013) para mostrar um resultado local de rigidez para uma variedade Riemanniana tridimensional M3 cuja curvatura escalar à limitada inferiormente por um constante negativa. Provamos o seguinte resultado: Seja &#8721;2 &#8834; M3 uma superfÃcie mÃnima estritamente estÃvel que localmente maximiza a massa Hawking em M. EntÃo M perto de &#8721; à um pedaÃo de um dos espaÃos de Kottler. / In this thesis, we prove estimates for the volume and boundary area of stable hypersurfaces &#8721;n-1 with nonpositive Yamabe invariant satisfying the free boundary condition in a Riemannian manifold Mn with bounds for the scalar curvature and the mean curvature of the boundary. Assuming further that &#8721; is locally volume-minimizing in a manifold M with scalar curvature bounded below by a nonpositive constant, we conclude that locally M splits along &#8721; as (-&#1028;, &#1028;)x &#8721;, for some &#1028; > 0. In the case that &#8721; locally minimizes a certain functional inspired by the work of Yau (2001), a neighborhood of &#8721; in M is isometric to ((-&#1028;, &#1028;) x &#8721;, dt2 + e2tg), where g is Ricci at. In the second part, we study other scalar curvature rigidity phenomena adapting a technique developed by MÃximo e Nunes (2013) to show a local rigidity result for three-dimensional Riemannian manifold M3 whose scalar curvature is bounded from below by a negative constant. We prove the following result: Let &#8721;2 &#8834; M3 be a stable minimal surface which locally maximizes the Hawking mass on M. Then M near &#8721; is a piece of one the Kottler space.
17

Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. / Uniqueness of spacelike hypersurfaces with constant higher order curvature in generalized Robertson-Walker spacetimes

Jonatan Floriano da Silva 26 March 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Estudaremos, de acordo com Alias e Colares em [11], o problema de unicidade para hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em um espaÃo-tempo de Robertson-Walker generalizado (GRW). Em particular, consideraremos a seguinte pergunta: Sob quais condiÃÃes deve uma hipersuperfÃcie tipo-espaÃo compacta com curvatura mÃdia de ordem superior constante em um espaÃo-tempo GRW espacialmente fechado ser uma fatia tipo-espaÃo? Provaremos que isto ocorre, essencialmente, sob a entÃo chamada condiÃÃo de convergÃncia nula. Nossa abordagem à baseada no uso das transformaÃÃes de Newton (e seus operadores diferenciais associados) e nas fÃrmulas de Minkowski para hipersuperfÃcies tipo-espaÃo.
18

A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy / A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy

Francisco de Assiss Benjamim Filho 25 June 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura escalar constante e volume unitÃrio. Provaremos que sob certas condiÃÃes integrais convenientes os pontos crÃticos de tal funcional sÃo variedades de Einstein provando assim a conjectura dos pontos crÃticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diÃmetro de hipersuperfÃcies mÃnimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfÃcie considerada. Para superfÃcies imersas na esfera de dimensÃo trÃs, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensÃo alta. Na Ãltima parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro sÃo as Ãnicas superfÃcies que tÃm energia constante. Em dimensÃo mais alta a situaÃÃo à bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condiÃÃo sobre a curvatura de Ricci, à possÃvel caracterizar a esfera tambÃm neste caso. Em seguida, aplicamos as informa-ÃÃes obtidas ao estudo de hipersuperfÃcies da esfera provando alguns resultados de rigidez desde que a hipersuperfÃcie tenha energia constante. / This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy.

Page generated in 0.0507 seconds