• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Der Einfluss von Rating auf BOLD-Effekte in verschiedenen Regionen des menschlichen Kortex während taktiler und schmerzhafter mechanischer Stimulation /

Schödel, Andrea Liliana Angela. Unknown Date (has links)
Erlangen, Nürnberg, Universiẗat, Diss., 2007. / Enth. 1 Sonderabdr. aus: Pain ; 2007. - Beitr. teilw. dt., teilw. engl.
2

Kernspintomographische Untersuchungen der neurophysiologischen Reaktion auf kortikale Stimulation /

Janz, Clemens. January 2001 (has links)
Würzburg, Universität, Thesis (doctoral), 2001.
3

Akustisch evozierte Hirnrindenpotentiale : sprachähnliche Stimulation und Artefaktkorrektur /

Hies, Thomas. January 2001 (has links)
Erlangen, Nürnberg, Universität, Thesis (doctoral), 2001.
4

Maximum a posteriori models for cortical modeling feature detectors, topography and modularity /

Weber, Cornelius. Unknown Date (has links) (PDF)
Techn. University, Diss., 2001--Berlin.
5

Functional characterization of m Satb1 and Satb2 in the developing neocortex / Funktionelle Charakterisierung von den Genen Satb1 und Satb2 in der Entwicklung der Hirnrinde

De Juan Romero, Meury del Camino 28 October 2008 (has links)
No description available.
6

Comparative areal and modular architecture of the cerebral cortex

Naumann, Robert Konrad 04 May 2015 (has links)
Die Neurone der Hirnrinde sind in Mikroschaltkreisen, Modulen und Arealen organisiert. In dieser Doktorarbeit habe ich die Neurobiologie und Hirnrindenstruktur der Etruskerspitzmaus - ein neues Modelltier für neurobiologische Forschung - und die modulare Struktur des entorhinalen Kortex der Ratte untersucht. Die geringe Größe des Gehirns der Etruskerspitzmaus bietet besondere Vorteile für das Verständnis kortikaler Aktivität von Zellgruppen. Die entorhinale Kortex enthält sowohl gut definierte funktionelle als auch anatomische Module und bietet daher eine einzigartige Gelegenheit für das Studium ihrer Wechselbeziehungen. Die Organisation der Hirnrinde der Etruskerspitzmaus reflektiert die Spezialisierung als schnelle, auf taktile Reize spezialisierte Jäger. Mehrere kortikale Regionen, die ein Drittel des kortikalen Volumens ausmachen, reagieren auf taktile Reize. Eine kortikale Hemisphäre enthält nur etwa eine Million Neuronen. Basierend auf der Zellarchitektur und histochemischen Färbungen haben wir 13 kortikale Regionen definiert - eine große Zahl angesichts der geringen Größe des Spitzmausgehirns. Pyramidenzellnester in Schicht 2 des medialen entorhinalen Kortex sind einfach zu identifizieren und eignen sich als Bezugssystem für die verschiedenen modulären Strukturen dieser Hirnregion. Diese Pyramidenzellen bündeln ihre Dendriten hin zu einem Punkt, der sich mit erhöhten Konzentrationen von präsynaptischen cholinergen Markern überschneidet. Cholinerge Transmission ist ein wichtiger Bestandteil des Theta-Rhythmus und unsere Ergebnisse zeigen, daß Pyramidenzellen im Vergleich zu Sternzellen doppelt so stark Theta-moduliert sind. Da fast alle Gitterzellen stark Theta-moduliert sind, ist anzunehmen dass Pyramidenzellen eine wichtige Rolle für die räumliche Navigation spielen. In dieser Arbeit wurden an der Hirnrinde der Etruskerspitzmaus sowie der entorhinalen Hirnrinde der Ratte modellhaft Struktur-Funktions-Beziehungen in der Großhirnrinde aufgeklärt. / Neurons of the cerebral cortex are collectively organized into microcircuits, modules and cortical areas. Here, I study the neurobiology and cortical structure of the Etruscan shrew - a new model animal for neurobiological research - and the modular structure of the entorhinal cortex of the rat. The small size of the Etruscan shrew''s brain offers particular advantages for understanding cortical activity at the multi-cell level, due to its small number of cortical neurons and its intrinsic advantages for optical imaging approaches. The entorhinal cortex contains well-defined functional and anatomical modules and provides a unique opportunity for studying their interrelation. The organization of the cerebral cortex of the Etruscan shrew reflects their behavioral specialization as fast touch-and-kill hunters. Several cortical areas comprising a third of the cortical volume respond to vibrissal touch. One cortical hemisphere contains only about 1 million neurons. Cytoarchitecture and histochemical staining revealed 13 cortical regions - a large number considering the small size of the shrew''s brain. Pyramidal cell clusters in layer 2 of medial entorhinal are reliably identifiable and thus provide common anatomical framework for entorhinal cortex modularity. These cells form geometrically arranged clusters and bundle their dendrites towards a common point overlapping with presynaptic markers of cholinergic inputs. Cholinergic drive is an important component of theta-rhythmicity which we found to be two-fold stronger in pyramidal than in stellate neurons. Since nearly all grid cells are strongly theta modulated, we suggest that pyramidal cells may play an important role in microcircuits for spatial navigation. In this work, we studied the areal architecture of the Etruscan shrew cortex and the modular architecture of the rat medial entorhinal cortex as contributions towards understanding structure-function relations in the cerebral cortex.

Page generated in 0.052 seconds