• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • Tagged with
  • 16
  • 16
  • 9
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of NuA4 histone acetyltransferase complex in DNA damage response pathways

Cheng, Xue 23 May 2019 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2018-2019 / L’organisation du génome eucaryote sous forme de chromatine est intimement liée à la régulation de nombreux processus cellulaires. Le contexte chromatinien joue un rôle central dans les voies de réponse cellulaires aux dommages à l’ADN. NuA4 est un complexe histone-acétyltransférase (HAT) très conservé formé de nombreuses sous-unités, responsable de l’acétylation des histones H4 et H2A au sein des nucléosomes. Il joue un rôle important dans l’expression des gènes mais aussi dans la réparation efficace des cassures double-brin (CDBs) de l’ADN. Bien qu’il ait été montré que NuA4 est rapidement recruté sur la chromatine autour des CDBs, le mécanisme précis de ce recrutement et le rôle joué par NuA4 à ce niveau restent mal compris. Mon projet de doctorat se concentre sur l’étude du mécanisme de recrutement de NuA4 et sur les conséquences de ce recrutement. Au moyen d’approches in vitro et in vivo, nous avons montré que NuA4 est recruté au niveau d’une CDB par le complexe MRX et se propage en suivant la résection de l’ADN. Après son recrutement et sa propagation, NuA4 participe à la réponse aux dommages en acétylant les nucléosomes pour faciliter leur retrait. De plus, NuA4 acétyle des facteurs-clés de la réponse aux dommages à l’ADN, tels que RPA et Sae2, pour réguler leur dynamique et leurs fonctions. En étudiant l’implication de NuA4 lors de phases spécifiques de la réponse aux dommages, nous avons découvert que le complexe est impliqué dans différentes étapes de la réparation par recombinaison homologue, dont la résection et la formation de D-loops, en coopération avec une autre HAT, Gcn5/SAGA. Dans l’ensemble, les résultats présentés dans cette thèse décrivent les fonctions complexes de NuA4 dans les voies de réponse aux dommages à l’ADN et permettent de mieux comprendre comment la chromatine et sa régulation orchestrent les processus cellulaires lors de la réparation de l’ADN. / The organization of the eukaryotic cell genome into chromatin structure is intricately linked to the regulation of many cellular processes. DNA damage response (DDR) takes place in the context of chromatin and the latter plays a central role in the regulation of cellular DDR pathways. The NuA4 histone acetyltransferase (HAT) is a highly conserved multi-subunit complex responsible for acetylation of nucleosomal histone H4 and H2A. It is important for gene expression but also the efficient repair of DNA double-strand breaks (DSBs). Although it was shown that NuA4 is rapidly recruited to chromatin surrounding a DSB, the specific mechanism of this recruitment and NuA4 function after its recruitment remains unknown. My PhD project focuses on investigating NuA4 recruitment mechanism and the functional consequences of this recruitment. Taking advantage of in vitro and in vivo approaches, we found that NuA4 is recruited by the MRX complex to a DSB site and spreads along with DNA resection. After recruitment and spreading, NuA4 participates in DDR through acetylation of nucleosomes to assist their removal. In addition, NuA4 also acetylates key DDR factors, such as RPA and Sae2, to regulate their dynamics and functions. By dissecting NuA4 involvement in specific DDR steps, we found that the complex is involved in different stages of homologous recombination (HR) repair, including resection and D-loop formation, during which it cooperates with another HAT, Gcn5/SAGA. Altogether, the data presented in this thesis delineate the intricate functions of NuA4 in DDR pathways and extend our understanding on how chromatin and its regulation orchestrate chromatin-based cellular processes during DNA repair
2

Dynamique chromatinienne dans la réparation de l'ADN : analyse fonctionnelle du complexe histone acétyltransférase NuA4 dans la réparation des dommages à l'ADN

Jobin-Robitaille, Olivier 11 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2005-2006 / La cellule dispose de plusieurs mécanismes de réparation, nécessitant tous l'accès à l'ADN, afin de prévenir les perturbations occasionnées par l'instabilité génomique. La structure des chromosomes eucaryotes (chromatine) forme une barrière physique empêchant l'accessibilité à l'ADN et ainsi les processus biologiques nucléaires tels la transcription, réplication, recombinaison et réparation des dommages de l'ADN. Dans ce dernier processus clé, certaines activités reconfigurant la chromatine pourraient donc s'avérer essentiels en facilitant l'accès à la machinerie de réparation. / Nous avons démontré le recrutement spécifique du complexe histone acétyltransférase NuA4 par immunoprécipitation de chromatine à une cassure double brin de l'ADN, le type de dommage le plus dangereux pour la cellule. Des cinétiques ont permis de déterminer à quel moment NuA4 apparaît au site de cassure en relation avec les modifications de la chromatine environnante et de vérifier l'apparition subséquente de complexes de remodelage ATP dépendant. En parallèle, de nouveaux sites de phosphorylation d'histones qui pourraient être impliqués dans la réparation de dommages sur l'ADN ont été investigués. En conclusion, nos travaux permettent de lier fonctionnellement des complexes de modification/reconfiguration de la chromatine avec le processus de réparation de dommages à l'ADN.
3

Dissecting the role of NuA4 and histone modifications in DNA repair to preserve genome integrity

Ahmad, Salar 23 July 2021 (has links)
Le génome eucaryote est contenu dans le noyau sous forme de chromatine, le nucléosome étant son unité de base. Le nucléosome est composé d'ADN enroulé autour d'un octamère d'histones. La chromatine permet l'empaquetage de l'ADN, mais module également diverses fonctions cellulaires telles que la transcription, la réplication et la réparation de l'ADN. Il existe différents types de dommages à l'ADN, les plus toxiques étant les cassures d'ADN double brins (DNA double-strand breaks, DSBs) qui si elles ne sont pas réparées, peuvent compromettre l'intégrité du génome. Les histones peuvent être l'objet de modifications post-traductionnelles qui sont essentielles pour réguler la chromatine. NuA4 est un complexe acétyltransférase qui a été bien décrit pour son rôle dans la transcription et la réparation de l'ADN. Au fil des années, diverses études ont montré que NuA4 acétyle les histones, cependant, de nouvelles études ont permis de mettre en évidence des cibles non-histones. Des précédentes études du laboratoire ont montrées comment NuA4 est recruté au site de dommages à l'ADN et comment il régule la réparation de l'ADN en acétylant les histones et les protéines de réparation. Dans ce travail, nous disséquons davantage le rôle de NuA4 dans la réparation des dommages à l'ADN. Ainsi, nous avons pu déterminer qu'il peut être recruté aux DSBs par un mécanisme alternatif reposant sur la protéine Lcd1ᴬᵀᴿᴵᴾ, indépendamment de Xrs2. Nous décrivons également deux nouvelles cibles acétylées par NuA4, Nej1 et Yku80, deux facteurs qui sont impliqués dans la réparation par jonctions d'extrémités non-homologue (non-homologous end-joining, NHEJ). De plus, nous avons établis qu'il existe une relation antagoniste entre NuA4 et les facteurs du NHEJ. L'acétylation de certains de ces facteurs favorise la réparation des DSBs par des voies de réparation qui reposent sur la résection des extrémités de la cassure. Cette régulation semble conservée au cours de l'évolution puisque le complexe mammifère TIP60 antagonise 53BP1 (levure Rad9) qui favorise la réparation par NHEJ et ainsi permet de réguler le choix de la voie de réparation. De plus, nous démontrons, que chez la levure, la queue N-terminale de l'histone H2A contient un site SQ qui est phosphorylé par Mec1ᴬᵀᴿ en présence de dommages à l'ADN. Nos données suggèrent que cette marque d'histone est nécessaire pour maintenir la fidélité de la résection de l'extrémité de l'ADN en modulant la liaison de Rad9⁵³ᴮᴾ¹. Nous supposons que cette phosphorylation agit de façon similaire à l'ubiquitination sur H2A chez les mammifères, mettant en évidence que des modifications d'histones différentes chez plusieurs organismes convergent pour effectuer une même fonction. Enfin, nous décrivons le rôle du domaine YEATS de la sous-unité Yaf9 partagée par les complexes SWR1 et NuA4. Nous montrons que ce domaine reconnaît la modification d'histone H3K27ac et est impliqué dans l'échange d'histone Htz1ᴴ²ᴬ·ᶻ. Ainsi cette modification est impliquée dans la régulation de la transcription et de la réparation des dommages à l'ADN. Dans l'ensemble, les résultats présentés dans cette thèse ajoutent des contributions importantes aux connaissances actuelles qui permettront de mieux comprendre le rôle de NuA4 et des modifications d'histones dans la réparation des dommages à l'ADN et dans le maintien de l'intégrité du génome. / The eukaryotic genome is packed in the nucleus in the form of chromatin, with the nucleosome being its basic unit. The nucleosome is composed of DNA wrapped around an octamer of histone proteins. Chromatin not only helps in the packing of DNA but also modulates various cellular functions such as transcription, replication and DNA repair. DNA damage manifests in various forms with DNA double-strand breaks (DSBs) being the most toxic which, if unrepaired, compromises genome integrity. Histones are decorated by various post-translational modifications that are essential for fine-tuning and regulation of chromatin. NuA4 is an acetyltransferase complex which has been well described for its role in transcription and DNA repair. Over the years, various studies have shown that NuA4 acts through acetylation of histones, however, new studies have highlighted non-histone targets. Our previous studies have shown how NuA4 is recruited to the site of DNA damage and how it regulates DNA repair by acetylating histones and repair proteins. Here we further dissect the role of NuA4 in DNA repair and found that it can be recruited to DSBs by an alternative mechanism relying on Lcd1ᴬᵀᴿᴵᴾ, independently of Xrs2. We also describe two new targets of NuA4 acetyltransferase activity, Nej1 and Yku80, both factors involved in repair by non-homologous end-joining (NHEJ). In fact, we observe an antagonistic relationship between NuA4 and NHEJ factors, with acetylation of the latter favouring repair of DSBs by resection-based pathways. This regulation seems evolutionary conserved with the mammalian TIP60complex antagonising pro-NHEJ factor 53BP1 (yeast Rad9) to govern the choice of repair pathway. In line with this, we further show that yeast histone H2A N-terminal tail harbours an SQ-site which is phosphorylated by Mec1ᴬᵀᴿ upon DNA damage. Our data suggests this histone mark is required to maintain the fidelity of DNA end resection by modulating the binding of Rad9⁵³ᴮᴾ¹. We speculate that this phosphorylation acts similarly to ubiquitination of mammalian H2A tail, highlighting different histone modifications across organisms converging to achieve a similar function. Lastly, we describe the role of the YEATS domain found in the Yaf9 subunit shared by SWR1 and NuA4 complexes. We show that this domain recognizes H3K27ac and is involved in histone Htz1ᴴ²ᴬ·ᶻ exchange, thus implicating it in transcription and DNA repair. Al together, the results presented in this thesis make important contributions to better understand the intricate roles played by NuA4 and histone modifications in the repair of DNA to maintain genome integrity.
4

Identification de l'activité histone acétyltransférase responsable de l'hyperacétylation de l'histone H4 durant la spermiogenèse / Identification of histone acetyltransferase activity responsible for hyperacetylation of histone H4 during spermiogenesis

Leroux, Jessica January 2013 (has links)
La stabilité de l’information génétique est d’une importance cruciale pour la fonction normale et la reproduction de tous les êtres vivants. Or, la capacité de fertilisation chez l’homme est habituellement mesurée en considérant la concentration, la motilité et la morphologie des spermatozoïdes. Cependant, ces paramètres ne prennent pas en considération l’intégrité du matériel génétique. Pourtant, de fortes évidences démontrent que la spermiogenèse, qui est la phase haploïde de la spermatogenèse durant laquelle se produit un important remodelage de la chromatine, serait une importante source d’instabilité génétique. En effet, des bris transitoires de l’ADN surviennent durant la spermiogenèse au même moment que l’hyperacétylation des histones H4 et la stimulation de l’hyperacétylation de H4 par traitement à la trichostatine A stimule la formation de cassures dans l’ADN. Ainsi, des histones acétyltransférases (HATs) pourraient affecter la compaction et l’intégrité de l’ADN et par conséquent le potentiel fertilisant du gamète mâle. Il est donc important d’identifier l’histone acétyltransférase impliquée dans l’hyper acétylation des histones H4 durant la spermiogenèse, puisqu’il s’agit d’un processus possiblement important pour la fertilité de l’homme. À la suite d'analyses par spectrométrie de masse d’échantillons protéiques de testicules de souris possédant la propriété d'acétyler l’histone H4 aucune HAT n’a été identifée. Par contre, la protéine mitochondriale ACAT1, qui catalyse la transformation réversible de deux acétyl-CoA en CoA et acétoacétyl-CoA, a été détectée. Ces observations permettent d’émettre l’hypothèse que cette protéine pourrait jouer un rôle dans la spermiogenèse en augmentant le niveau d’acétyl-CoA chez les spermatides en élongation. En effet, puisque selon mes résultats les histones H4 sont en mesure de s’auto-hyperacétyler, on peut supposer qu’une augmentation du niveau d’acétyl-CoA causerait une acétylation de ces histones à l’échelle du génome, permettant ainsi la poursuite de la spermiogenèse et éventuellement la formation de spermatozoïdes matures et fonctionnels.
5

Domaines protéiques du complexe histone acétyltransférase NuA4 impliqués dans la transcription et le maintien de l'intégrité du génome

Fortin, Israël 11 April 2018 (has links)
Le complexe Histone Acétyltransféranse (HAT) NuA4 s'inscrit comme un élément clef dans le contrôle de plusieurs fonctions cellulaires essentielles chez les eucaryotes. L'implication maintenant connu de NuA4 dans la transcription et dans la réponse aux dommages à l'ADN nous ont poussé à approfondir la caractérisation fonctionnelle des diverses sous-unités de NuA4, notamment au niveau des rôles que peuvent occuper les différents domaines protéiques retrouvés au sein de ce complexe. Une première série d'analyses a démontré l'importance de plusieurs résidus du chromodomaine de Esa1, la sous-unité catalytique de NuA4. La mutation de ces résidus engendre des défauts majeurs d'acétylation de la chromatine, suggérant ainsi un rôle du chromodomaine dans l'activité catalytique de Esa1. Parallèlement, d'autres études ont permis d'approfondir la fonction du domaine SANT de la protéine Eaf2, du PHD finger de Yng2 et du domaine PI-3 kinase de Tra1. Ce dernier domaine intéragit avec le complexe MRX, un complexe de levure recruté directement au site de cassure de l'ADN. Des recherches menées autour de l'étude de l'activité kinase de cette protéine ont permis de suggérer l'implication de NuA4 dans les événements précoces survenant suite à un bris double brin, précisant ainsi le rôle de ce complexe dans la réparation de l'ADN.
6

Investigating Haspin-dependent phosphorylation of histones during mitosis

Alharbi, Ibrahim 07 December 2020 (has links)
La protéine Haspine est une sérine / thréonine kinase mitotique conservée, connue pour fonctionner par la phosphorylation de l'histone H3 (H3pT3). Bien que H3T3 soit le seul substrat bien connu de Haspine, il se peut que H3pT3 ne suffise pas à expliquer toutes les fonctions de Haspine au cours de la mitose. Fait intéressant, l’homologie de la portion N-terminale de H3 avec la portion Cterminale de H2B suggère que la thréonine 119 de H2B (H2BT119) est un candidat potentiel fort pour être un substrat majeur de Haspine. Ainsi, l’objectif de ce projet était d’étudier la phosphorylation de H2BT119 dépendante de Haspine pendant la mitose. La phosphorylation de H2B recombinant sur la position T119 par Haspine a été confirmée par un dosage de kinase en utilisant la radioactivité. En outre, le signal H2BpT119 sur la protéine recombinante H2B a été détecté par un anticorps anti-H2BpT119, confirmant la phosphorylation de H2B dépendante de Haspine sur ce site dans le test de kinase in vitro. En outre, une augmentation de la taille moléculaire de H2B a été observée après le dosage de la kinase. Les résultats des expériences in vivo, incluant l'analyse par Western-blot d'extrait d'histones mitotiques et la microscopie à fluorescence avec l'anti-H2BpT119, suggèrent une phosphorylation de H2B au site T119, qui s'est également avérée dépendant de l'activité de Haspine. Cependant, en raison de la potentielle réactivité croisée de l’anti-H2BpT119 avec H3pT3, une forme marquée de H2B a été utilisée lors de l’étude du signal H2BpT119 au cours de la mitose. Le marquage augmente la taille moléculaire de H2B et aide à reconnaître H2BpT119 loin de H3pT3. Plusieurs systèmes de marquage ont été utilisés, mais toutes les tentatives ont échoué, en raison du faible niveau de H2B exogène. Cependant, les résultats de ce projet suggèrent que le signal H2BpT119 pendant la mitose pourrait révéler un nouveau mécanisme dépendant de Haspine pour la régulation de la ségrégation des chromosomes. Par conséquent, il reste important d'étudier cette marque d'histone au cours de la mitose. / Haspin is a conserved mitotic serine/threonine kinase that is known to function through histone H3 phosphorylation (H3pT3). Despite this, H3T3 is the only well-known substrate for Haspin, H3pT3 may not be enough to explain all Haspin functions during mitosis. Interestingly, homology of H3 N-terminus with H2B C-terminus suggests that H2BT119 is a strong potential candidate to be a major substrate of Haspin. Thus, the aim was to investigate Haspin-dependent phosphorylation of H2BT119 during mitosis. Phosphorylation of recombinant H2B at T119 by Haspin was confirmed by a radioactivity-based kinase assay. Also, H2BpT119 signal on recombinant H2B was detected by an anti-H2BpT119 antibody, confirming Haspin-dependent phosphorylation of H2B at this site in the in vitro kinase assay. Also, an upshift of H2B was observed following the kinase assay. Results from in vivo experiments, including Western blot analysis of mitotic histone extract and immunofluorescence microscopy with the anti-H2BpT119, support phosphorylation of T119 in H2B, which also was found to depend on Haspin activity. However, due to the potential anti-H2BpT119 cross-reactivity with H3pT3, while exploring H2BpT119 signal during mitosis, tagged H2B was used. The tag increases H2B molecular size and helps to distinguish H2BpT119 from H3pT3. Several tagging systems was used, but all attempts failed, because of the low level of the exogenous tagged H2B. However, the results of this project suggest H2BpT119 signal during mitosis that may reveal a novel Haspindependent mechanism for chromosome segregation regulation. Therefore, it remains important to study this histone mark during mitosis.
7

Régulation de l'activité des facteurs de transcription induits par l'hypoxie

Lauzier, Marie-Claude 16 April 2018 (has links)
Les facteurs de transcription induits par l’hypoxie (HIF) sont responsables de la transcription de nombreux gènes impliqués dans la réponse à l’hypoxie. En plus de réguler de nombreux processus cellulaires et physiologiques, ces facteurs sont impliqués dans plusieurs pathologies. Hétérodimères constitués d’une sous-unité β constitutive et d’une sous-unité α sensible à l’oxygène, ces facteurs sont majoritairement régulés par l’hydroxylation et la dégradation de la sous-unité α. En situation d’hypoxie, ce mécanisme de dégradation est inhibé, ce qui favorise la formation de complexes HIF. Les travaux présentés dans cette thèse visent à élucider les mécanismes régulant l’activation de HIF en situation d’hypoxie ou de normoxie. Dans la section Résultats, vous retrouverez une section consacrée à l’activation de HIF par l’angiotensine II (AngII) chez les cellules musculaires lisses vasculaires. Plus précisément, le rôle de la transactivation de récepteurs à activité tyrosine kinase suivi de l’implication de HIF dans la biologie de ces cellules seront abordés. Dans un deuxième temps, un inhibiteur des métalloprotéases, le BiPS, vous sera présenté comme étant un puissant inducteur des protéines HIF-α. En effet, le BiPS est un puissant inhibiteur des enzymes responsables de la dégradation des protéines HIF-α. En outre, le BiPS permet l’activation des complexes HIF ainsi formés. Ces résultats inattendus pourraient avoir des répercussions importantes dans l’utilisation de cet agent à des fins angiostatiques dans le traitement du cancer en plus de présenter un nouvel agent ayant un potentiel thérapeutique important dans le traitement de pathologies ischémiques. Finalement, vous retrouverez une section consacrée à l’étude d’un nouveau répresseur de HIF, l’histone acétyltransférase HBO1. De façon étonnante, HBO1 réprime l’activité des complexes HIF par un mécanisme indépendant de la stabilisation des sous-unités α mais dépendant du remodelage de la chromatine. En conclusion, ces résultats mettent en lumière de nouveaux mécanismes de régulation de l’activité des facteurs de transcription HIF. Considérant les rôles physiologiques importants de ces complexes ainsi que leurs implications dans diverses maladies, ces résultats permettront d’accroître les connaissances disponibles quant aux fonctions de ces complexes et mèneront vers le développement d’outils thérapeutiques efficaces. / Hypoxia-inducible transcription factors (HIF) are decisive elements in the transcriptional regulation of numerous genes expressed in conditions of hypoxic stress. In addition to their roles in many physiological and cellular processes, HIF are also involved in diverse pathological situations. Obligate heterodimers composed of a constitutive β subunit and of an oxygen tension-regulated α subunit, these transcription factors are mainly regulated by the hydroxylation and subsequent degradation of the α subunit. In hypoxia, this degradation mechanism is inhibited, resulting in HIF complex formation and binding to specific DNA sequences. The work presented in this thesis aims to elucidate regulatory mechanisms involved in HIF activation during hypoxia or in normal oxygen conditions. In the Results section, you will find a study devoted to HIF activation by angiotensin II (Ang II) in vascular smooth muscle cells. Specifically, the role of receptor tyrosine kinase transactivation on HIF activation was evaluated along with a description of HIF-1’s role in smooth muscle cells biology. Next, an inhibitor of matrix metalloproteases, BiPS, will be presented as a novel and potent HIF activator. This unexpected effect may have important implications for the use of this compound for its angiostatic potential in cancer treatment. In addition, BiPS and derivative molecules could also have strong therapeutic potential in ischemic diseases. Finally, you will find a section devoted to the study of a new transcriptional repressor of HIF complexes, the histone acetyltransferase bound to ORC-1, HBO1. Surprisingly, HBO1 represses the activity of HIF complexes by a mechanism independent of the availability of the α subunits, but dependent on a chromatin remodelling event. In conclusion, this thesis highlights new regulatory mechanisms responsible for HIF activation. Considering the important physiological roles of HIF complexes and their implications in the pathogenesis of different diseases, these studies increase the available knowledge concerning the biological functions of these complexes and could contribute to the development of more effective and safe therapeutic tools.
8

Étude des déterminants moléculaires contrôlant l'association du complexe histone acétyltransférase NuA4 avec la chromatine durant la transcription

Cramet, Myriam 16 April 2018 (has links)
La transcription est le processus biologique qui permet l'expression des gènes et donc est essentielle à la vie cellulaire. Ce phénomène nécessite une régulation très fine via de nombreux signaux cellulaires menant à un contrôle de la dynamique chromatinienne. Chez Saccharomyces cerevisiae, le complexe histone acétyltransférase NuA4 participe à cette régulation en acétylant les queues N-terminales des histones H4 et H2A. La chromatine est alors plus relâchée, ce qui facilite l'accès de toute la machinerie transcriptionnelle. Lors de cette étude, nous avons abordé deux aspects distincts de la fonction de NuA4. D'une part, la sous-unité Yng2, homologue de suppresseur de tumeur humain impliqué entre autres dans la régulation de p53, est connue pour interférer dans plusieurs processus cellulaires. In vivo, le mutant Ayng2 entraîne une diminution de l'acétylation de H4 et de la transcription dépendante de NuA4. La création de mutations ponctuelles dans le domaine ± Plant HomeoDomain ¿ (PHD) et la région polybasique de la protéine provoque la perte d'interactions spécifiques avec la modification post-traductionnelle H3K4me3 et les phosphatidylinositol phosphates. L'étude fonctionnelle de ces mutants révèle une répercussion sur l'activité de NuA4 et la transcription. D'autre part, les sous-unités EaO, 5 et 7 existent majoritairement hors de NuA4 sous la forme d'un trimère. Des tests de sensibilité mettent en évidence une corrélation entre ce trimère et la transcription. De plus, le trimère serait présent à la région codante de gènes transcrits suggérant un rôle dans l'élongation transcriptionnelle.
9

Assemblage et spécificité des complexes acétyltransférases de la famille MYST

Lalonde, Marie-Eve 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / La chromatine est une structure nucléaire composée des histones, autour desquelles l’ADN s’enroule pour être empaqueté dans le noyau. La dynamique de cette structure permet de réguler plusieurs procédés nucléaires, tels que la transcription, la réplication et la réparation de l’ADN. Il existe, entre autre, des complexes de modifications de la chromatine qui collaborent à la régulation de ces différentes fonctions nucléaires. Les acétyltransférases de la famille MYST participent à l’acétylation des queues N-term des histones. Très conservées de la levure à l’humain, elles possèdent des rôles importants dans plusieurs processus cellulaires. Deux des complexes MYST ont été au cœur de mes études doctorales, soit le complexe HBO1 et MOZ/MORF. Mon projet de doctorat avait comme premier objectif de disséquer les différents domaines protéiques présents au sein de ces deux complexes et de caractériser leurs interactions soit avec les autres sous-unités, soit avec la chromatine. Par des analyses biochimiques, nous avons déterminé le mode d’assemblage des complexes MYST. Nous avons également caractérisé leurs différents domaines de reconnaissance de modifications post-traductionnelles des histones, afin de déterminer leur mode de recrutement. Des analyses à l’échelle du génome entier nous ont aussi permis de localiser ces protéines à des loci bien précis. De plus, il nous a été possible de constater l’importance de l’association des protéines INGs sur la fonction suppresseur de tumeur du complexe HBO1-JADE. Suite à une purification de la protéine BRPF1, j’ai pu constater l’association de HBO1 avec cette protéine. Comme deuxième objectif de thèse, j’ai donc eu à caractériser le nouveau complexe HBO1-BRPF1 et à démontrer sa spécificité d’acétylation. En utilisant des essais d’acétylation in vitro combinés à des expériences d’immunoprécipitation de la chromatine, j’ai pu établir un nouveau mode de régulation de l’activité acétyltransférase de la protéine HBO1. Ce mécanisme étonnant démontre un changement de spécificité de l’activité catalytique des MYST en fonction de leur association aux protéines d’échafaudage. Tous ces résultats démontrent donc qu’il est important de considérer l’ensemble des sous-unités des complexes MYST, car elles sont toutes aussi importantes que l’enzyme pour la reconnaissance, la spécificité d’acétylation ainsi que les fonctions cellulaires de ces complexes. / Chromatin is a nuclear structure formed by DNA that is wrapped around histone octamers, allowing for its compaction in the nucleus. This structure is dynamic and regulates many nuclear processes, such as transcription, replication and DNA repair. Among other factors, complexes that modify chromatin collaborate for the regulation of these nuclear functions. The MYST acetyltransferase family participate in the acetylation of histone N-term tails. Highly conserved from yeast to human, they play various roles in many cellular pathways. During my PhD, I have focused on two of these MYST acetyltransferases, HBO1 and MOZ/MORF. The first objective of my project was to dissect the different protein domains comprised within these complexes and define their interactions either with other subunits or with chromatin. Using biochemical experiments, we brought to the forefront the assembly mechanism of the MYST complexes. Additionally, we characterized their chromatin recognition domains, which helped us determine their recruitment mechanism. Genome-wide analysis also gave us the precise localisation of these proteins on many loci. Moreover, we could determine that the association with ING subunits is essential for the tumor suppressor function of these complexes. Following purification of the BRPF1 protein, we could detect binding of the HBO1 protein. Thus, the second objective of my PhD project was to characterize the newly identified HBO1-BRPF1 complex and determine its acetylation specificity. Using in vitro acetylation assays combined with chromatin immunoprecipitation experiments, we unravelled a new regulation mechanism of the HBO1 acetyltransferase activity. This surprising mechanism shows a switch of histone tail acetylation specificity depending of the associated scaffold proteins, an activity previously thought to be intrinsic to the catalytic subunit. These data highlight a new role of the associated scaffold subunits within MYST-ING acetyltransferase complexes in directing the acetylation of specific histone tails. Altogether, these results demonstrate that it is important to consider MYST acetyltransferases as complexes, since their different subunits contribute to chromatin recognition, acetylation specificity and cellular functions.
10

Implication of NuA4 histone acetyltransferase complex in transcription regulation and genome stability

Cheng, Xue 23 April 2018 (has links)
Le génome est organisé sous forme de chromatine afin de contourner la problématique d’espace limité dans le noyau. De plus, cette structure hautement condensé est une barrière physique aux processus cellulaires qui nécessite l’accès à l’information génétique. Les dernières années d'études ont dévoilé des complexes modificateurs de la chromatine comme des acteurs clés dans plusieurs mécanismes de modulation de la chromatine. L'un de ces modificateurs est NuA4, un complexe conservé au cours de l’évolution qui acétyle les histones H2A, H2A.Z et H4. Dans cette thèse, en utilisant Saccharomyces cerevisiae comme organisme modèle, nous avons identifié l'implication de NuA4 dans l'incorporation de H2A.Z et la biosynthèse des voies purines. Dans une seconde partie, nous étudions la participation de NuA4 dans la réponse aux dommages de l'ADN. Plus précisément, nous avons caractérisé la phosphorylation des sous-unités NuA4 dépendante de Mec1/Tel1. L’ensemble de ces travaux, comment NuA4 coordonne différentes activités cellulaires. / Cell genome is packaged into chromatin in order to compensate the limited space within the nucleus. However, this highly condensed structure also presents strong physical barriers for cellular processes using DNA as templates. Recent years of studies have unveiled chromatin modifying complexes as key players in several mechanisms of chromatin modulation. One of these modifiers is NuA4, an evolutionary conserved large multi-subunit histone acetyltransferase complex that acetylates histone H2A, H2A.Z and H4. In this thesis, using Saccharomyces cerevisiae as model system, we identified the implication of NuA4 in global histone variant H2A.Z incorporation and purine biosynthesis pathways. Moreover, we also show previously uncharacterized involvement of NuA4 in DNA damage response pathways through Mec1/ Tel1-dependent phosphorylation events on NuA4 subunits. Further analysis will shed light on detailed mechanisms about how NuA4, as a multifunctional complex, coordinates various cellular activities.

Page generated in 0.1061 seconds