• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of H1 linker histone variants in ovarian cancer

Medrzycki, Magdalena 21 September 2015 (has links)
Linker histone H1 associates with nucleosomes, facilitating folding and packaging of DNA into higher order chromatin structure. With 11 variants in mammals, histone H1 is the most divergent histone class. Histone H1 variants are differentially expressed during development and cellular differentiation, and regulate specific gene expression in vivo. Ample studies have established the role of linker histone H1 in chromatin compaction and gene expression regulation; however, its role in diseases, such as cancer, remain understudied. In this study, we explore the role of H1 in ovarian cancer, one of the most devastating gynecological cancers due to its poor prognosis and difficulty in early diagnosis. Although mutations of genes responsible for cell proliferation, differentiation and survival have been found in ovarian cancers, ample evidence also suggests an important role of epigenetic changes in the disease occurrence and progression. Because epigenetic changes do not alter DNA sequence and can be reversed or reprogrammed, they offer an attractive avenue for therapeutic intervention in cancer treatment. Using quantitative RT-PCR assays, we systematically examined the expression of 7 H1 genes in 33 human epithelial ovarian tumors. By clustering analysis, we found that ovarian malignant adenocarcinomas and benign adenomas exhibited characteristic expression patterns. We demonstrate that expression profiling of 7 H1 genes in tumor samples discriminates adenocarcinomas vs. adenomas with high accuracy. These findings indicate that the expression of H1 variants is exquisitely regulated and may serve as potential epigenetic biomarkers for ovarian cancer. To further investigate the role of H1 subtypes in ovarian cancer cells, we employ an over-expression approach to test the function of H1 subtypes in an ovarian cancer cell line OVCAR-3. We found that histone H1.3 over-expression significantly suppresses the growth and colony formation of OVCAR-3 cells. Gene expression arrays identified many genes affected by H1.3 over-expression, and oncogene H19 is among the genes most dramatically repressed by H1.3 over-expression. Over-expression of several other H1 subtypes does not lead to significant reduction of H19 expression, suggesting a specific effect by H1.3. Consistently, knockdown of H1.3 increases H19 expression. Furthermore, increased expression of H1.3 leads to accumulation of H1.3 as well as increased DNA methylation at the regulatory regions of H19. Finally we identified a synergistic effect of H1.3 over-expression and H19 knockdown on inhibition of ovarian cancer cell growth. These results establish oncogene H19 as a direct target of histone H1.3, identify a novel role of H1 variants in ovarian cancer mediated through regulating oncogene H19 expression, and may offer new approaches for ovarian cancer therapeutics.
2

Transcriptional regulation of wood formation in eucalyptus : Role of MYB transcription factors and protein-protein interactions / Régulation transcriptionnelle de la formation du bois chez l'eucalyptus : rôle des facteurs de transcription MYB et des interactions protéines-protéines

Plasencia Casadevall, Anna 15 December 2015 (has links)
Notre objectif était de mieux comprendre la régulation de la biosynthèse des parois secondaires lors de la formation du bois chez l'Eucalyptus, le feuillu le plus planté au monde et le deuxième dont le génome est séquencé. Nous avons caractérisé trois facteurs de transcription de la famille MYB-R2R3 et montré que EgMYB137 était un nouveau régulateur de la biosynthèse des parois secondaires. Nous avons aussi démontré que l'activité transcriptionnelle de EgMYB1, un répresseur de la biosynthèse des lignines, était régulée par une interaction protéine-protéine impliquant une histone linker (EgH1.3). Enfin, nous avons mis au point une méthode de transformation homologue chez l'Eucalyptus via A. rhizogenes. Les " hairy roots " transgéniques sont adaptées à la caractérisation fonctionnelle de gènes reliés à la formation du xylème. Nos résultats ont permis de découvrir de nouveaux acteurs impliqués dans la régulation des parois secondaires, mettant en lumière la complexité de ce processus mais aussi offrant de nouvelles perspectives pour l'amélioration du bois pour des applications industrielles comme la production de bioéthanol de deuxième génération. / Our objective was to better understand the regulation of the biosynthesis of the lignified secondary cell walls during wood formation in Eucalyptus, the most planted hardwood tree, and the second whose genome has been sequenced. We functionally characterized three Eucalyptus transcription factors of the R2R3-MYB family and identified EgMYB137 as a new regulator of secondary cell wall deposition. We also showed that the transcriptional activity of EgMYB1, a repressor of lignin biosynthesis was modulated by protein-protein interactions involving a linker histone (EgH1.3). Finally, we set up a homologous transformation system for Eucalyptus using Agrobacterium rhizogenes. The transgenic hairy roots are suitable for high throughput functional characterization of cell wall-related genes. Our findings not only allowed getting new insights into the complexity of the network regulating secondary cell walls but also open new avenues to improve wood quality for industrial applications such as second-generation bioethanol.

Page generated in 0.0641 seconds