• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 10
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 37
  • 26
  • 23
  • 23
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Computational algorithm development for epigenomic analysis

Wang, Jianrong 03 July 2012 (has links)
Multiple computational algorithms were developed for analyzing ChIP-seq datasets of histone modifications. For basic ChIP-seq data processing, the problems of ambiguous short sequence read mapping and broad peak calling of diffuse ChIP-seq signals were solved by novel statistical methods. Their performance was systematically evaluated compared with existing approaches. The potential utility of finding meaningful biological information was demonstrated by the applications on real datasets. For biological question driven data mining, several important topics were selected for algorithm developments, including hypothesis-driven insulator prediction, unbiased chromatin boundary element discovery and combinatorial histone modification signature inference. The integrative computational pipeline for insulator prediction not only produced a list of putative insulators but also recovered specific associated chromatin and functional features. Selected predictions have been experimentally validated. The unbiased chromatin boundary element prediction algorithm was feature-free and had the capability to discover novel types of boundary elements. The predictions found a set of chromatin features and provided the first report of tRNA-derived boundary elements in the human genome. The combinatorial chromatin signature algorithm employed chromatin profile alignments for unsupervised inferences of histone modification patterns. The signatures were associated with various regulatory elements and functional activities. Both the computational advantages and the biological discoveries were discussed.
22

The Control of the Epigenome

Lezcano, Magda January 2006 (has links)
The genetic information required for the existence of a living cell of any kind is encoded in the sequence information scripted in the double helix DNA. A modern trend in biology struggles to come to grip with the amazing fact that there are so many different cell types in our body and that they are directed from the same genomic blueprint. It is clear, that the key to this feature is provided by epigenetic information that dictates how, where and when genes should be expressed. Epigenetic states “dress up” the genome by packaging it in chromatin conformations that differentially regulate accessibility for key nuclear factors and in coordination with differential localizations within the nucleus will dictate the ultimate task, expression. In the imprinted Igf2/H19 domain, this feature is determined by the interaction between the chromatin insulator protein CTCF and the unmethylated H19 imprinting control region. Here I show that CTCF interacts with many sites genome-wide and that these sites are generally protected from DNA methylation, suggesting that CTCF function has been recruited to manifest novel imprinted states during mammalian development. This thesis also describes the discovery of an epigenetically regulated network of intra and interchromosomal complexes, identified by the invented 4C method. Importantly, the disruption of CTCF binding sites at the H19 imprinting control region not only disconnects this network, but also leads to significant changes in expression patterns in the interacting partners. Interestingly, CTCF plays an important role in the regulation of the replication timing not only of the Igf2 gene, but also of all other sequences binding this factor potentially by a cell cycle-specific relocation of CTCF-DNA complexes to subnuclear compartments. Finally, I show that epigenetic marks signifying active or inactive states can be gained and lost, respectively, upon exposure to stress. As many genes belonging to the apoptotic pathway are upregulated we propose that stress-induced epigenetic lesions represent a surveillance system marking the affected cells for death to the benefit of the individual. This important observation opens our minds to the view of new intrinsic mechanisms that the cell has in order to maintain proper gene expression, and in the case of misleads there are several check points that direct the cell to towards important survival decisions.
23

The dynamics of bivalent chromatin during development in mammals

Mantsoki, Anna January 2017 (has links)
Mammalian cell types and tissues have diverse functional roles within an organism but can be derived by the differentiation of the embryonic stem cells (ESCs). ESCs are pluripotent cells with self-renewal properties. During development subsets of genes in ESCs are activated or silenced for manifestation of the cell type specific function. Gene expression changes occur transiently in early developmental stages, through signals received and executed by a variety of transcription factors (TFs), regulatory elements (promoters, enhancers) and epigenetic modifications of chromatin. Post-translational modifications of the histone tails are regulated by chromatin modifiers and transform the chromatin architecture. Polycomb (PcG) and Trithorax (TrxG) group proteins are the most commonly studied histone modifiers. They were first discovered as repressors (H3K27me3) and activators (H3K4me3) respectively of Homeobox (Hox) genes in Drosophila and they are conserved in mammals. Bivalent chromatin is defined as the simultaneous presence of silencing (H3K27me3) and activating (H3K4me3) histone marks and was first discovered as a feature of many developmental gene promoters of ESCs. Bivalent promoters are thought to be in a ‘poised’ state for later activation or repression during differentiation due to the presence of the two counter-acting histone modifications and a pausing variant of RNA polymerase II (RNAPII) accompanied with intermediate-low levels of expression. By integrative analysis of publicly available ChIP sequencing (ChIP-seq) datasets in murine and human ESCs, we predicted 3,659 and 4,979 high–confidence (HC) bivalent promoters in mouse and human ESCs respectively. Using a peak-based method, we acquire a set of bivalent promoters with high enrichment for developmental regulators. Over 85% of Polycomb targets were bivalent and their expression was particularly sensitive to TF perturbation. Moreover, murine HC bivalent promoters were occupied by both Polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions. HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters and a ‘TCCCC’ sequence motif was specifically enriched in bivalent promoters. Using the recent technology of single cell RNA sequencing (scRNA-seq) we focused on gene expression heterogeneity and how it may affect the output of differentiation. We collected single cell gene expression profiles for 32 human and 39 murine ESCs and studied the correlation between diverse characteristics such as network connectivity and coefficient of variation (CV) across single cells. We further characterized properties unique to genes with high CV. Highly expressed genes tended to have a low CV and were enriched for cell cycle genes. In contrast, High CV genes were co-expressed with other High CV genes, were enriched for bivalent promoters and showed enrichment for response to DNA damage and DNA repair. Bivalent promoters in ESCs grouped in four distinct classes of variable biological functions according to Polycomb occupancy and three RNAPII variants. To study the dynamics of epigenetic and transcription control at promoters during development, we collected ChIPseq data for two chromatin modifications (H3K4me3 and H3K27me3) and RNAPII (8WG16 antibody) as well as expression data (RNA-seq) across 8 cell types (ESCs and seven committed cell types) in mouse. Hierarchical clustering of 22,179 unique gene promoters across cell types, showed that H3K4me3 peaks are in agreement with the expression data while H3K27me3 and RNAPII peaks were not highly consistent with the hierarchical tree of gene expression. Unsupervised clustering of ChIP-seq and RNA-seq profiles has resulted in 31 distinct profiles, which were subsequently narrowed down to nine major profile groups across cell types. TF enrichment at individual clusters using ChIP sequencing data did not fully agree with the classification of 8 major profile groups. Considering all the above results, three major epigenetic profiles (active, bivalent and latent) seem to be conserved across the species and cell types in our study. These states could recapitulate only a fraction of the transcriptional information - adding other chromatin marks could enrich it - since they are seemingly unaffected by their respective expression profiles. H3K27me3 only state has low CpG density and shows stronger signatures at differentiated cell types. Transcriptional control is tighter in active than bivalent promoters and the different occupancy levels of PcG subunits and RNAPII can be reflected at the expression variance of bivalent genes, where a fraction of them are involved in developmental functions while others are more tissue-specific. Last, there is a striking similarity in the pausing patterns of RNAPII in the progenitor cell types, which suggests that RNAPII pausing is correlated with the developmental potential of the cell type. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during development.
24

Etude des mutants synthétiques létaux avec l'AICAR chez la levure et conservation chez l'Homme / Chemo-genetic interactions between histone modification and the antiproliferation drug aicar are conserved in yeast and humans

Albrecht, Delphine 14 October 2016 (has links)
L’identification d’interactions synthétiques létales (SL) apparait aujourd’hui comme une approche prometteuse, qui permet de cibler directement les cellules cancéreuses. Dans cette étude, nous avons utilisé la levure Saccharomyces cerevisiae en tant qu’organisme modèle simple pour cribler des mutations SL avec une drogue, l’AICAR (5-Amino-4-Imidazole CArboxamide Ribonucleoside). L’AICAR est une molécule connue pour inhiber spécifiquement la prolifération de multiples lignées cancéreuses. Ici, nous montrons que la perte d’ubiquitination de l’histone H2B ou de méthylation de l’histone H3K4 est SL avec l’AICAR. Nos résultats pointent sur l’AICAR causant une accumulation de cellules en G1 due à ses effets sur la localisation subcellulaire de la cycline Cln3, tandis que la perte d’ubiquitination d’H2B ou de méthylation de H3K4 affectent l’expression des deux autres cyclines deG1, CLN1 et CLN2. Ainsi, l’AICAR et la perte d’ubiquitination de l’histone H2B ou de méthylation del’histone H3K4 affectent les trois cyclines simultanément, conduisant à une condition connue pourêtre SL. De plus, cette interaction chemo-genetique s’est révélée être conservée chez les cellules humaines HCT116. En effet, le knock down de RNF40, ASH2L ou MLL2 conduit à une sensibilité àl’AICAR exacerbée. Or, on sait que MLL2 est muté dans de nombreux cancers, ce qui rend cette interaction SL très intéressante dans le cadre d’une approche thérapeutique. / Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach that aims to directly target the cancer cells. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-Amino-4-ImidazoleCArboxamide Ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to specifically inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of two several histone modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4methylation), greatly enhanced AICAR inhibitory effects on growth. Our results point to AICAR causing a significant accumulation of G1 cells due to its impact on Cln3 subcellular localization, whilebre1 or set1 deletion impacts on the two other G1 cyclins, by affecting CLN1 and CLN2 expression .As a consequence, AICAR and bre1/set1 deletions jointly affect all three G1 cyclins, leading to a condition that is known to result in synthetic lethality. Most importantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Knock-down of RNF40, ASH2L orKMT2D induced a highly significant increased sensitivity to AICAR. As KMT2D is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.
25

Exploration of genomic imprinting at the murine Dlk1-Dio3 locus : role of the Meg3 non-coding RNA / Exploration de l'empreinte génomique au niveau du locus Dlk1-Dio3 : rôle de la non-codant l'ARN Meg3

Sanli, Ildem 12 December 2016 (has links)
Le domaine Dlk1-Dio3 est l’un des rares domaines imprimés contrôlés par une région de contrôle d'impression méthylée sur le chromosome paternel, nommée IG-DMR. Dans l’embryon, au niveau du domaine Dlk1, Rtl1 et Dio3 les gènes codant pour des protéines sont exprimés à partir du chromosome paternel, tandis que les ARNs non-codants dont Meg3, les snoRNAs à boite C/D et les micro-ARNs sont exprimés à partir du chromosome maternel.Il a été montré que la copie maternelle de l'IG-DMR est nécessaire pour l'expression des gènes imprimés de ce domaine et que les ARNs de types enhancer (de la même région) activent la transcription des ARNs non-codants. Cependant, les mécanismes qui régulent l'expression imprimée de gènes codant pour des protéines restent indéterminés. Dans ce projet, nous avons cherché à élucider les mécanismes qui contrôlent l'expression spécifiquement paternelle des gènes codant pour des protéines ainsi que le rôle possible des ARNs non-codants dans ce processus.Pour nos études alléliques, nous avons utilisé des cellules ES hybrides qui ont été obtenues en croisant des lignées de M. musculus domesticus et M. musculus molossinus. Ces cellules ont été différenciées in vitro dans des lignées neurales. Dans les cellules ES, l'expression Dlk1 est détectée à partir des deux chromosomes parentaux à des niveaux très bas. Lors de la différenciation, l'allèle paternel de Dlk1 devient actif tandis que le niveau d'expression de l'allèle maternel reste faible. Nos études de la chromatine ont montré que cette surexpression est due à l’activation de la chromatine sur l'allèle paternel de Dlk1.L'un de nos objectifs était d'explorer le rôle de Meg3 (un long ARN non-codant) dans la régulation de l’empreinte de Dlk1. A cet effet, nous avons généré des cellules souches embryonnaires déficientes en Meg3. Dans toutes les lignées déficientes, de suppressions maternelles ou bi-alléliques, nous avons constaté une perte d’expression de tous les ANRs non-codants. De plus, l’expression de Dlk1 devient bi-allélique dans ces cellules. Pour élucider le mécanisme de l'empreinte de ce gène, nous avons décidé d'étudier les caractéristiques de la chromatine au niveau du promoteur Dlk1 dans les cellules déficientes en Meg3. Nous avons examiné les modifications activatrices et répressives des histones ainsi que l'occupation de l'ARN Pol II. Nous avons observé l'acquisition des marques d’une chromatine active sur les deux chromosomes ainsi que le recrutement bi-allélique de l'ARN Pol II.Bien que nous n’ayons pas pu détecter une perte de la marque répressive H3K27me3 suite à la surexpression de Dlk1, nous avons observé un gain d'acétylation sur ce résidu lysine. Afin de comprendre davantage le rôle de la marque H3K27me3 sur l’empreinte de Dlk1, nous avons généré des cellules ES dépourvues de EZH2, la méthyltransférase de H3K27. L’expression de Dlk1 dans les cellules différenciées dépourvues de H3K27me3 est bi-allélique.Enfin, ces données suggèrent que l'expression des ARNs non-codant empêche l'activation de Dlk1 sur le chromosome maternel via l’activité de EZH2 au cours du développement. / The Dlk1-Dio3 imprinted domain is one of the few imprinted domains that are controlled by a paternally methylated imprinting control region, IG-DMR. Protein-coding genes of the domain, Dlk1, Rtl1 and Dio3 are expressed from the paternal chromosome, and non-coding RNAs (ncRNAs) including Meg3, C/D box snoRNAs and microRNAs are expressed from the maternal chromosome exclusively in the embryo. Maternal copy of the IG-DMR is required for the imprinted gene expression at this domain. Enhancer RNAs transcribed from this region are involved in activation of ncRNA expression on the maternal chromosome. However, the regulation of imprinted expression of protein-coding genes remains unknown. In this project, we aimed to elucidate the mechanisms controlling the paternal specific expression of protein-coding genes and a possible role of ncRNAs in this process.For our allelic studies, we made use of hybrid ES cells that were obtained by crossing M. musculus domesticus and M. musculus molossinus strains. These cells were differentiated in vitro into neural lineages. In ES cells, Dlk1 expression is detected from both parental chromosomes at very low levels. Upon differentiation, paternal allele of Dlk1 gets activated while low level of expression is detected from maternal allele. Our chromatin studies showed that this upregulation is through the acquisition of active chromatin on the paternal allele of Dlk1.One of our aims was to explore the role of Meg3 long non-coding RNA (lncRNA) in the regulation of Dlk1 imprinting. For this purpose, we generated ES cells deficient in Meg3. In all maternal or biallelic deletion lines, we observed complete loss of all ncRNA expression. Interestingly, in these cells Dlk1 expression becomes biallelic. To elucidate the mechanism of imprinting of this gene, we set out to study the chromatin features at the Dlk1 promoter in Meg3 deficient cells. We looked into active and repressive histone modifications and RNA Pol II occupancy. We observed acquisition of active chromatin marks on both chromosomes as well as biallelic recruitment of RNA Pol II.Although we could not detect a loss of repressive mark H3K27me3 upon Dlk1 upregulation on the paternal allele, we observed gain of acetylation on this lysine residue. To further investigate the role of H3K27me3 mark on Dlk1 imprinting, we generated ES cells that lack functional EZH2, the H3K27 methyltransferase. Dlk1 is biallelically expressed in the differentiated cells that are devoid of H3K27me3.Combined, these data suggest a model in which non-coding RNA expression prevents the developmental activation of Dlk1 on the maternal chromosome by a process that also requires the activity of EZH2.
26

Histone modifications and their role in splicing

Wettermark, Anna January 2020 (has links)
Splicing is the process when introns gets removed and exons are spliced together. This is an important step to form a clean mRNA with no unnecessary sequences that could interrupt protein synthesis. There are different types of splicing and some of them need a complex called spliceosome. The spliceosome requires ATP, small nuclear RNAs and splicing factors. The spliceosome and the process splicing can be regulated by epigenetics, and one epigenetic mechanism is histone modification. There are four types of histone modifications; methylation, phosphorylation, ubiquitination and acetylation. They regulate splicing to different extents by altering the chromatin structure, affect the assembly of the spliceosome and regulate the attraction of splicing factors. This review will investigate if histone modifications affect splicing and to what extent. Suggestions for further research regarding the relationship between splicing and histone modifications will also be provided. The review is based on 30 articles and two books and the search was conducted between 30th of March 2020 and 13th of April 2020. Ubiquitination and phosphorylation have a minor effect on splicing meanwhile methylation and acetylation affect splicing in great extent.
27

Study of the SAGA deubiquitination module: identification of new modulators and its implication on Spinocerebellar Ataxia Type 7

Oliete Calvo, Paula 01 September 2017 (has links)
Regulation of chromatin by epigenetic modifications is a fundamental step during the control of gene expression in eukaryotic cells. The participation of different factors including histone chaperones, chromatin remodeling complexes and histone-modifying complexes regulate chromatin dynamics and ensure the correct metabolism of transcripts that need to be exported to the cytoplasm. In these lines, post-translational modifications including monoubiquitination of histone H2B (H2Bub1) and methylation of histone H3 represent a well-studied histone cross-talk which is required for chromatin integrity and transcription. Additionally, the transition from H2Bub1 to its deubiquitinated form by Ubp8, the DUB enzyme from SAGA (Spt-Ada-Gcn5-acetyltranferase) co-activator complex, is fundamental to obtain a correct gene expression. In this work, we demonstrate that the histone chaperone Asf1 and the Ran-binding protein Mog1, participate in maintaining correct levels of H2Bub1. We show that Mog1 is required for the trimethylation of histone H3 at lysine 4 (H3K4me3), hence, acting as a modulator of histone cross-talk. Mog1 role into gene expression is also demonstrated by its physical and genetically interaction with transcription factors including SAGA and COMPASS complexes. Indeed, we demonstrate that Mog1 interacts genetically with TREX-2 subunits and affects mRNA export. During this work, we have also focused in understanding the molecular mechanisms surrounding Spinocerebellar Ataxia Type 7 (SCA7) which is a rare disease caused by amino acid glutamine (Q) repeats within the DUBm component, ATXN7. Therefore, our interest has been directed towards the study of new mechanisms that trigger SCA7 such as the DUB activity from SAGA complex, protein-protein interaction networks and metabolic profiles. / La regulación de la cromatina a través de modificaciones epigenéticas es un paso fundamental durante el control de la expresión génica en células eucariotas. La participación de diferentes factores tales como chaperonas de histonas, complejos de remodelación de la cromatina y complejos modificadores de histonas, regulan la dinámica de la cromatina y garantizan el correcto metabolismo de los transcritos que necesitan ser exportados al citoplasma. De esta forma, las modificaciones postraduccionales que incluyen la monoubicuitinación de la histona H2B (H2Bub1) y la metilación de la histona H3 representan un "cross-talk" de histonas la cual es requerida para la integridad de la cromatina y la transcripción. Además, la transición de H2Bub1 a su forma desubicuitinada por Ubp8, la enzima DUB del complejo co-activador SAGA (Spt-Ada-Gcn5-acetiltranferasa), es necesaria para obtener una expresión génica correcta. En este trabajo, se demuestra que la chaperona de histona Asf1 y la proteína de unión a Ran, Mog1, participan en el mantenimiento de los niveles de H2Bub1. Se demuestra que Mog1 es necesaria para la trimetilación de la histona H3 en la lisina 4 (H3K4me3), actuando como un modulador del "cross-talk" de histonas. El papel de Mog1 en la expresión génica también se demuestra por sus interacciones físicas y genéticas con factores de transcripción, incluyendo los complejos SAGA y COMPASS. Además, demostramos que Mog1 interactúa genéticamente con subunidades de TREX-2 y afecta a la exportación de mRNAs. Durante este trabajo, también nos hemos centrado en la comprensión de los mecanismos moleculares que envuelven a la Ataxia Espinocerebelosa Tipo 7 (SCA7), que es una enfermedad rara causada por una repetición de aminoácidos glutamina (Q) dentro del componente del DUBm, ATXN7. Por lo tanto, nuestro interés se ha dirigido hacia el estudio de nuevos mecanismos que desencadenan SCA7, como la actividad DUB del complejo SAGA, las interacciones proteína-proteína y los perfiles metabólicos. / La regulació de la cromatina a través de modificacions epigenètiques és un pas fonamental durant el control de l'expressió gènica en cèl·lules eucariotes. La participació de diferents factors tals com chaperones d'histones, complexos de remodelació de la cromatina i complexos modificadors d'histones, regulen la dinàmica de la cromatina i garanteixen el correcte metabolisme dels transcrits que necessiten ser exportats al citoplasma. D'aquesta forma, les modificacions postraduccionals que inclouen la monoubicuitinació de la histona H2B (H2Bub1) i la metilació de la histona H3 representen un "cross-talk" d'histones la qual és requerida per a la integritat de la cromatina i la transcripció. A més, la transició d'H2Bub1 a la seua forma desubicuitinada per Ubp8, l'enzim DUB del complex co-activador SAGA (Spt-Ada-Gcn5-acetiltranferasa), és necessària per a obtenir una expressió gènica correcta. En aquest treball, es demostra que la chaperona de histona Asf1 i la proteïna d'unió a Ran, Mog1, participen en el manteniment dels nivells d'H2Bub1. Es demostra que Mog1 és necessària per a la trimetilació de la histona H3 en la lisina 4 (H3K4me3), actuant com un modulador del "cross-talk" d'histones. El paper de Mog1 en l'expressió gènica també es demostra per les seues interaccions físiques i genètiques amb factors de transcripció, incloent els complexos SAGA i COMPASS. A més, vam demostrar que Mog1 interactua genèticament amb subunitats de TREX-2 i afecta a l'exportació de mRNA. Durant aquest treball, també ens hem centrat en la comprensió dels mecanismes moleculars que envolten a l'Atàxia Espinocerebelosa Tipus 7 (SCA7), que és una malaltia rara causada per una repetició d'aminoàcids glutamina (Q) dins del component del DUBm, ATXN7. Per tant, el nostre interès s'ha dirigit cap a l'estudi de nous mecanismes que desencadenen SCA7, com l'activitat DUB del complex SAGA, les interacciones proteïna-proteïna i els perfils metabòlics. / Oliete Calvo, P. (2017). Study of the SAGA deubiquitination module: identification of new modulators and its implication on Spinocerebellar Ataxia Type 7 [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86155 / TESIS
28

TiBi-3D - a Guide through the World of Epigenetics

Gerighausen, Daniel 26 February 2018 (has links)
In the last two decades the study of changes in the genome function that are not induced by changes in DNA has consolidated a strong research field called ”epigenetics”. Chromatin state changes play an essential role in the regulation of transcription of many genes, thus controlling cell differentiation. A large part of these changes is due to histone modifications that alter the accessibility of the DNA. Current state of the art visualization methods for the analysis of epigenetic data sets are not suited to represent the relationship between the combinatorial pattern of histone modifications and their regulatory effects.
29

RNA-DIRECTED DNA METHYLATION PREVENTS RAPID AND HERITABLE REVERSAL OF TRANSPOSON UNDER HEAT STRESS IN ZEA MAYS

Wei Guo (10716381) 28 April 2021 (has links)
<p>RNA-directed DNA methylation (RdDM) is a process by which epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on <i>Mediator of Paramutation 1 (Mop1</i>), a putative RNA dependent RNA polymerase. Here I show that although RdDM is essential for the maintenance of DNA methylation of a silenced <i>MuDR</i> transposon in maize, a loss of that methylation does not result in a restoration of activity of that element. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of the element, heritable silencing is mediated via H3K9 and H3K27 dimethylation, even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by H3K27 trimethylation, a mark normally associated with somatically inherited gene silencing. I find that a brief exposure of high temperature in a <i>mop1</i> mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in <i>mop1</i> wild type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once it has been reversed. To leverage the specificity of our observations made at bench, I also performed a transcriptome analysis in <i>mop1</i> mutants under heat. I found that a substantial number of genes as well as a subset of TEs are reactivated in <i>mop1</i> mutants under heat, which is consistent with the effects I observed on <i>MuDR</i>. Interestingly, I found that <i>mop1</i>-specific reactivation of TEs is closely correlated with changes in expression of nearby genes, most of which are involved in metabolic transportation and sensing. This suggests that one function of <i>MOP1</i> is to prevent inappropriate expression of genes in this pathway when they are close to TEs. Taken together, my work will provide an opportunity to better understand the causes and consequences of TE silencing and reactivation, as well as the effects of TEs on gene regulation under stress conditions.</p>
30

The Dynamic Epigenome: Analysis of the Distribution of Histone Modifications

Steiner, Lydia 27 June 2013 (has links)
There is a genome in a cell, as everyone knows, but there is also an epigenome. The epigenome regulates the transcription of the underlying genome. In the last decade, it was discovered that the epigenome state and its regulation are important for differentiation and development. Correlation studies with aging samples had led to the hypothesis that misregulation of the epigenome causes aging and cancer. Furthermore, diseases were identified which are caused by errors in the epigenome state and its regulation. Identification of erroneous epigenome states and misregulation requires the prior knowledge of the common state. Several studies aim at measuring epigenome states in different organisms and cell types and thus, provide a huge amount of data. In this dissertation, a pipeline is developed to analyze and characterize histone modifications with respect to different cell types. Application of this pipeline is shown for a published data set of mouse consisting of data for H3K4me3, H3K27me3, and H3K9me3 measured in embryonic stem cells, embryonic fibroblasts and neuronal progenitors. Furthermore, methods for the detection of the epigenetic patterns are presented in this dissertation. Therefore, a segmentation method is developed to segment the genome guided by the data sets. Based on this segmentation, the epigenome states as well as epigenetic variation can be studied. Different visualization methods are developed to highlight the epigenetic patterns in the segmentation data. Application of the segmentation AND visualization methods to the mouse data set had resulted in not only colorful squares but also in biological conclusions! It demonstrate the power of the developed methods. Although the studied data set in this dissertation contains only ordinary tissue cells, the methods are not restricted to study the reference epigenome state. Comparison of normal and disease cells as well as comparison with aged cells are possible with all of the methods. Finally, the methods are compared based on the obtained results. It shows that all methods highlight different aspects of the data. Thus, applying all methods to the same data sets, deep insights into the epigenome in murine embryonic stem cells, embryonic fibroblasts and neuronal progenitor cells are gained. For example, it had been found that several mechanisms exist setting H3K4me3 marks. Furthermore, not all mechanisms are found in all cell types. Strong evidence had been found that catalysis of H3K4me3 and H3K27me3 is coupled.

Page generated in 0.341 seconds