• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 13
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Von Gryphius bis Hofmannswaldau Untersuchungen zur Sprache der deutschen Literatur im Zeitalter des Barock /

Beil-Schickler, Gudrun. January 1900 (has links)
Thesis (doctoral)--Universität Tübingen, 1994. / Includes bibliographical references (p. 160-181).
32

Das Echo der Bilder Jugendstil, Quattrocento und ägyptischer Totenkult in Rilkes poetischer Rezeption Hofmanns, Vogelers und Modersohn-Beckers /

Rios, Rita. January 2003 (has links)
Genf, Univ., Diss., 2003.
33

Von Gryphius bis Hofmannswaldau : Untersuchungen zur Sprache der deutschen Literatur im Zeitalter des Barock /

Beil-Schickler, Gudrun. January 1900 (has links)
Diss.--Neuphilologische Fakultät--Universität Tübingen, 1994. / Bibliogr. p. 160-181.
34

Transition de spin thermo- et photo-induite dans de nouveaux systèmes discrets, polynucléaires et polymériques / Thermal and photo-induced spin crossover in discrets, polynuclear and polymeric new systems

Milin, Eric 14 December 2015 (has links)
Depuis quelques années, les matériaux à transition de spin présentant une bistabilité thermique ou photoinduite sont très étudiés en raison des applications futures potentielles pour le stockage de l'information. Dans ce contexte, ce travail a pour objectif la synthèse de nouveaux systèmes bistables du fer (ll). Pour ce faire, deux stratégies ont été utilisées : l'une consiste à augmenter les interactions intramoléculaires en substituant le contre-ion d'un système à transition de spin, l'autre consiste à associer un ligand neutre polydentate à un co-ligand anionique pontant.Dans une première partie, Ia modification du contre-ion a permis l'obtention d'un système discret mononucléaire à base d'un ligand macrocyclique présentant de la bistabilité thermique. Le second système discret est un complexe dinucléaire à base du ligand tmpa (triméthylpyridyl amine] qui a permis de mettre en avant les effets de la substitution du Iigand sur les caractéristiques de la transition de spin.Dans un deuxième temps, nous nous sommes orientés vers la synthèse de systèmes à structures étendues en utilisant des ligands anioniques rigides pontants de type tétracyanométallate [M(CN)4 ]²zassociés au ligand organique 8-aminoquinoléine (aqin). Cette association a conduit à l'obtention de chaînes monodimensionnelles présentant une transition abrupte avec hystérésis.Enfin, pour obtenir des systèmes bi- et tri-dimensionnels, nous avons associé le ligand 4-(2pyridyl)-1,2,4, 4H-triazole (trz-pyJ, potentiellement pontant, aux ligands anioniques [tcpd]L et [Pt(CN]al].Le système [Fe[trz-pyJz[Pt[CNJ4)].3H20 obtenu est un réseau 2D de type Hofmann avec des propriétés magnétiques et photo-magnétiques originales se distinguant par la présence d'une hystérésis cachée révélée par pho to-irradiation. / In recent years, Spin Crossover materials [SCO) with thermal or Iight induced bistability are extensively studied because of their futur potential applications in memory display devices. In this context, the aim of this work is the synthesis of bistable new spin crossover systems based on Fe(ll). Two strategies were used: the first one is to increase the intramolecular interactions by substituting the counter-ion nature in a spin crossover system, the second one is to associate a neutral ligand to a bridging polydentate co-ligand.In rhe ffrst part, the modification of the counter-ion enabled us to obtain a discrete mononuclear system based on macrocycle ligand with thermal bistability. The second discrete system is a dinuclear complex based on tmpa (triimethylpyridyl amine) which led us to study ligand substitution effects of the Spin Cross-Over behaviour.In rhe second part, the aim is the synthesis of extended structures systems by using rigid anionic bridging ligands like tetracyanometallate anions [M[CN)4]2-and the organic ligand quinolin-8-amine. This association allowed to obtain 1D chains with abrupt spin crossover presenting hysteresis.Finally, to synthesise SCO 2D and 3D systems, we have associated the potentially bridging 4-[2pyridyl)-t,2,4,4H-triazole (trz-pyJ ligand to inorganic bridging anions tcpd²- and [Pt[CN)4]²-. The [Fe[trzpy)2(Pt[CN)4]].3H20 system obtained is as Hofmann-like 2D network with novel magnetic and photomagnetic properties with hidden hysteresis revealed by photo-switching.
35

Postava krále Davida v dílech německy píšících židovských autorů / The character of King David in the literary works of Jewish German authors

Hlávková, Hana January 2016 (has links)
The main task of diploma thesis titled The character of King David in the literary works of Jewish German authors is a reflection of the biblical character of David in selected works. It classifies perspectives of particular Jewish German authors in belles-lettres and reference literature and compares their approaching methods. The goal is to evaulate particular interpretations and attributes of the biblical King David, one of the most beloved although inconsistent figures of all times. The diploma thesis is divided into three parts; comparison of two mainly followed litterary works and a personal short reflection of the David's charakter. Powered by TCPDF (www.tcpdf.org)
36

Synthese sterisch gehinderter Amine

Heck, Manuel 21 April 2021 (has links)
In der vorliegenden Arbeit werden Synthesen von sterisch anspruchsvollen sekundären wie auch tertiären Aminen und Enaminen untersucht. Ein Großteil der Arbeit befasst sich mit der Darstellung von N-Chloraminen, die im weiteren Verlauf zu sek. und tert. Aminen und Enaminen, mit Hilfe von metallorganischen Reagenzien und N,N,N',N'-Tetramethylethylendiamin (TMEDA), umgesetzt werden. Die dabei resultierenden Amine werden, auf Grund ihrer gehinderten Rotation, NMR-spektroskopisch untersucht. Dabei werden diverse dynamische Effekte bei verschiedenen Temperaturen beobachtet und gedeutet. So lassen sich auf diese Weise Rotationsbarrieren berechnen und vergleichen. Das gibt Aufschluss über die sterische Hinderung von verschiedenen Alkylgruppen. Weiterhin wird eine Eliminierung von Olefinen bei tert. Aminen beobachtet, welche der Hofmann-Eliminierung ähnelt. Diese verläuft anders als in Lehrbüchern beschrieben. Außerdem werden die Aktivierungsenergie und Isotopeneffekte der Eliminierung untersucht. Diese Zersetzung erfolgt auch mit Alkalimetallen als Katalysatoren. Eine Herstellung von neuartigen Enaminen aus 'turbo'-Amiden und gespannten Verbindungen wie Cyclooctin wird ebenfalls beschrieben. Die Enamine werden durch NMR-Spektroskopie auf ihren Olefincharakter untersucht. Eine neue Synthese von hochsubstituierten Pyrrolidinen und entsprechenden Iminiumsalzen, aus sek. tert-Octylaminen, wird vorgestellt. Diese Darstellung ist eine Erweiterung der Hofmann-Löffler-Freytag-Reaktion, welche eine radikalische Ringschlussreaktion beinhaltet. Die Darstellung der Iminiumsalze erfolgt metallfrei, durch die Oxidation mit N-Bromsuccinimid (NBS).:Abkürzungsverzeichnis VIII Abbildungsverzeichnis XII 1 Einleitung 1.1 Bedeutung von Aminen 1.2 Alkylierung von N -Haloaminen 1.3 Sterische Hinderung und Dynamische NMR-Spektroskopie 1.4 Zielstellung 2 Ergebnisteil 2.1 Darstellung neuer, sekundärer Amine als Vorstufen weiterer Synthesen 2.2 Darstellung tertiärer Amine 2.2.1 Darstellung diverser N -Chloramine für die elektrophile Aminierung 2.2.2 Reaktionen an N,N-Dichloraminen 2.2.3 Alkylierungen am tert-Butyl-tert-octylamin 2.2.4 Elektrophile Aminierungen an weiteren N-Chloraminen 2.2.4.1 Cycloalkylierung zu tert. Aminen 2.2.4.2 Isopropylierung am Stickstoff 2.2.4.3 Einführung der Neopentylgruppe 2.2.4.4 Versuche der Einführung tertiärer Gruppen 2.2.5 Synthese von tertiären Enaminen 2.2.6 Reaktion zwischen gespannten Verbindungen und Metallamiden 2.2.7 Acylierungen von sterisch anspruchsvollen Aminen 2.2.8 Synthese von tertiären Aminen aus Amiden 2.2.9 Ringschlussreaktionen zu möglichen CAAC-Vorläufern 2.3 Untersuchungen zur Hofmann-Eliminierung bei tertiären Aminen 2.3.1 Untersuchung der Aktivierungsenergie der Eliminierung 2.3.2 Hofmann-Eliminierung katalysiert durch Alkalisalze 2.3.3 Untersuchungen zum Isotopeneffekt 2.3.4 Zersetzungen von tertiären Aminen durch Methanol 2.4 Dynamische NMR-Spektroskopie bei tertiären Aminen 2.4.1 Rotamere in der C2V -Symmetrie 2.4.2 Rotamere in der C2H-Symmetrie 2.4.3 Komplexe dynamische Rotamere 3 Zusammenfassung und Ausblick 4 Experimenteller Teil 4.1 Experimentelles Arbeiten 4.1.1 Arbeiten unter inerten Bedingungen 4.1.2 Umkondensation 4.1.3 Säulenchromatographie 4.2 Analytisches Arbeiten 4.2.1 NMR-Spektroskopie 4.2.2 GC-MS 4.2.3 Analytischer Gaschromatograph 4.2.4 HRMS 4.3 Elementaranalyse 4.4 Röntgeneinkristallstrukturanalyse 4.5 Synthesevorschriften 4.5.1 Synthese von tert-Butyl-diisopropylamin (2) 4.5.2 Synthese von tert-Butyl-diisopropylamin (2) und Di-tert-Butylamin (14) 4.5.3 Synthese von N -(1-Adamantyl)-N-tert-octylamin 23 4.5.4 Synthese von N -tert-Octyl-tritylamin 24 4.5.5 Synthese von N -(2,6-Dimethylheptan-2-yl)acetamid (26) 4.5.6 Synthese von 2-Amino-2,6-dimethylheptan (27) 4.5.7 Synthese von 2-Azido-2,6-dimethylheptan (28) 4.5.8 Synthese von N -Isopropyl-2,6-dimethylheptan-2-amin (29) 4.5.9 Synthese von N -(1-Adamantyl)-2,6-dimethylheptan-2-amin (32) 4.5.10 Synthese von 4-Chlor-3,3,5,5-tetramethylmorpholin (34a) 4.5.11 Synthese von 2,2'-(Chlorimino)bis(2-methylpropan-1-ol) (34b) 4.5.12 Synthese von N -tert-Butyl-N -chlorcyclohexylamin (34c) 4.5.13 Synthese von N -Chlor-N -isopropyl-N -tert-octylamin (34d) 4.5.14 Synthese von N -(1-Adamantyl)-N -chlor-N -tert-octylamin 34e 4.5.15 Synthese von N -(1-Adamantyl)-N -chlor-2,6-dimethylheptan-2-amin (34f) 4.5.16 Synthese von 8-Chlor-7,7,9,9-tetramethyl-1,4-dioxa-8-azaspiro- [4.5]decan (34g) 4.5.17 Synthese von 4-Chlor-3,3,5,5-tetramethylmorpholin-2-on (34h) 4.5.18 Synthese von N -Chlor-N -tert-butyl-N -tritylamin (34i) 4.5.19 Synthese von Di-tert-butyldiazen (37) 4.5.20 Synthese von N -(1-Adamantyl)-neopentylamin (38d) 4.5.21 Synthese von N -tert-Butyl-N -cyclohexyl-N -tert-octylamin (40b) 4.5.22 Synthese von N -tert-Butyl-N -cyclopentyl-N -tert-octylamin (40c) 4.5.23 Synthese von N -tert-Butyl-N -isobutyl-N -tert-octylamin (40d) 4.5.24 Synthese von N -tert-Butyl-N -sec-butyl-N -tert-octylamin (40e) 4.5.25 Synthese von N,N -Diisopropyl-tert-octylamin (40f) 4.5.26 Synthese von N 1,N 4-Di-tert-butyl-2,2,4-trimethyl-N 1-(2,4,4-trimethylpentan-2-yl)pentan-1,4-diamin (43) 4.5.27 Synthese von 8-Cyclohexyl-7,7,9,9-tetramethyl-1,4-dioxa-8-azaspiro[4.5]decan (44a) 4.5.28 Synthese von N -Cyclopentyl-2,2,6,6-tetramethylpiperidin (44b) 4.5.29 Synthese von N,N -Di-tert-butylcyclohexylamin (44c) 4.5.30 Synthese von Di-tert-butyl-cyclopentylamin (44d) 4.5.31 Synthese von N -tert-Butyl-N,N -dicyclohexylamin (44e) 4.5.32 Synthese von 8-Isopropyl-7,7,9,9-tetramethyl-1,4-dioxa-8-azaspiro[4.5]decan (46a) 4.5.33 Synthese von 4-Isopropyl-3,3,5,5-tetramethylmorpholin-2-on (46b) 4.5.34 Synthese von N -(1-Adamantyl)-N -isopropyl-N -tert-octylamin (46c) 4.5.35 Synthese von N -(1-Adamantyl)-N -isopropyl-2,6-dimethylheptan2-amin (46d) . 4.5.36 Synthese von 8-Neopentyl-7,7,9,9-tetramethyl-1,4-dioxa-8-azaspiro [4.5]decan (47a) 4.5.37 Synthese von N -Neopentyl-2,2,6,6-tetramethylpiperidin (47b) 4.5.38 Synthese von 4-Neopentyl-3,3,5,5-tetramethylmorpholin (47c) 4.5.39 Synthese von N,N -Di-tert-butyl-neopentylamin (47d) 4.5.40 Synthese von N -tert-Amyl-N -tert-butyl-neopentylamin (47e) 4.5.41 Synthese von 1,1,3-Triethyl-1H -isoindol (49) 4.5.42 Synthese von (E)-4-(Di-tert-butylamino)but-3-en-1-ol (51) 4.5.43 Synthese von N -tert-Butyl-N -tert-octyl-N -prop-1-en-2-ylamin (58a) 4.5.44 Synthese von N,N -Di-tert-butylprop-1-en-2-amin (58b) 4.5.45 Synthese von 2,2,6,6-Tetramethyl-1-(prop-1-en-2-yl)piperidin (58c) 4.5.46 Synthese von (E)-N,N -Diisopropylcyclooct-1-enamin (60a) 4.5.47 Synthese von (E)-N -(tert-Butyl)-N -isopropylcyclooct-1-enamin (60b) 4.5.48 Synthese von (E)-1-(Cyclooct-1-en-1-yl)-2,2,6,6-tetramethylpiperidin (60c) 4.5.49 Synthese von 1,2:3,4:5,6-tris(hexamethylen)benzol (61) 4.5.50 Synthese von (Z)-2-(Diisopropylammonio)-3-oxocyclooct-1-enolat (62) 4.5.51 Synthese von N -(2,4,4-trimethylpentan-2-yl)acetamid (66a) 4.5.52 Synthese von 2-Phenyl-N -(2,4,4-trimethylpentan-2-yl)acetamid (66b) 4.5.53 Synthese von Di-tert-butyl-ethenylamin (69) 4.5.54 Synthese von 1-(1-Methoxyvinyl)-2,2,6,6-tetramethylpiperidin (71) 4.5.55 Synthese von N -tert-Butyl-N -isobutyl-N -isopropylamin (75) 4.5.56 Synthese von 1-tert-Butyl-2,2,4,4-tetramethyl-3,4-dihydro-2H-pyrroliumchlorid (77a) 4.5.57 Synthese von 1-tert-Butyl-2,2,4,4-tetramethyl-3,4-dihydro-2H-pyrroliumbromid (77b) 4.5.58 Synthese von 1-(1-Adamantyl)-2,2,4,4-tetramethyl-3,4-dihydro-2H-pyrroliumbromid (77f) 4.5.59 Synthese von 1-(tert-Butyl)-5-butyl-2,2,4,4-tetramethylpyrrolidin (79c) 4.5.60 Synthese von 1-(tert-Butyl)-2,2,4,4,5-pentamethylpyrrolidin (79d) 4.5.61 Synthese von 5-(Dibrommethyl)-2,2,4,4-tetramethyl-3,4-dihydro-2H-pyrrol (80) 4.5.62 Synthese von 1-(1-Adamantyl)-2,2,4,4,5-pentamethylpyrrolidin (85) 4.5.63 NMR-Daten von 2,2'-(tert-Butylazadiyl)bis(2-methylpropanal) (101)
37

Novel Approaches For The Synthesis Of Amino Acids And Piperidines, Including Asymmetric Strategies

Vippila, Mohana Rao 07 1900 (has links) (PDF)
Chapter I deals with novel approaches for α-amino acids. This chapter has been divided into three sections. Section A describes the synthesis of α-amino acids via the Beckmann rearrangement of carboxyl-protected β-keto acid oximes. The synthesis of α-amino acids using the Beckmann rearrangement involves the preparation of the Z-oxime and efficient protection of the carboxyl group. Various 2-substituted benzoylacetic acids were synthesized, in which the carboxyl function was masked as a 2,4,10-trioxaadamantane unit (an orthoacetate), and were converted to their oximes (Scheme 1).1 The oximes were converted to the their mesylates, which underwent the Beckmann rearrangement with basic Al2O3 in refluxing CHCl3. The corresponding 2-substituted-N-benzoyl-α-amino orthoacetates were obtained in excellent overall yields. In Section B, the synthesis of α-amino acids via the Hofmann rearrangement of carboxyl-protected malonamic acids is described. The Hofmann rearrangement involves the migration of the alkyl moiety of the amide onto the N-centre. Various 2-substituted malonamic acids (malonic acid mono amides) were synthesized with the carboxyl group masked as a 2,4,10¬trioxaadamantane unit (an orthoacetate). These underwent the Hofmann rearrangement with phenyliodoso acetate and KOH/MeOH (Scheme 2). The resulting (N-methoxycarbonyl)¬trioxaadmantylmethylamines (carbamates) were formed in yields > 90%, and are α-amino acids with both carboxyl and amino protection.2 In Section C, an approach to chiral amino acids via the reductive amination of ketones, involving the hydride reduction of 1-(S)-phenethyl amine derived Schiff bases of C-protected α¬keto acids is described. An efficient synthesis of α-amino acids has thus been developed in high diastereoselectivity. Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivative followed by reaction with a Grignard reagent in refluxing THF (Scheme 3). These α-keto orthoformates were converted to corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), the Schiff bases being reduced with NaBH4 (MeOH/0 °C) to the corresponding 1-(S)-phenethyl N-alkylamines (diastereomeric excess by NMR ~ 90:10).3 Hydrogenolysis of the phenethyl group (Pd-C/H2/MeOH) finally led to the (aminoalkyl)trioxaadamantanes, which are chiral C-protected α-amino acids, in excellent overall yields. Here a mild, inexpensive and efficient hydride reducing agent for the reductive amination of α-keto acids has been developed. Chapter II deals with the enantioselective synthesis of piperidines and its applications in the synthesis of piperidine alkaloids.4 This chapter has been divided into two sections. In Section A, the enantioselective synthesis of 2-substituted piperidines and its applications in the synthesis of (R)-(-)-coniine and (R)-(+)-anatabine are described. Various N-tert-butylsulfinyl imines were synthesized, which upon allyl Grignard addition followed by N-allylation gave the diallyl compound with good diastereoselectivity (Scheme 4). The diallyl compound underwent ring closing metathesis with Grubbs’ first generation catalyst and subsequent reduction of the double bond with H2-Pd/C, furnished N-sulfinyl-2-susbstituted piperidines. Using this methodology (R)¬(-)-coniine hydrochloride and (R)-(+)-anatabine were synthesized. In Section B, the enantioselective synthesis of (S)-tert-butyl 2-(2¬hydroxyethyl)piperidine-1-carboxylate and its elaboration to the synthesis of (S)-(+)-δ-coniceine and (S)-(+)-pelletierine are described. The (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1¬carboxylate is a synthon used for the synthesis of various 2-substituted piperidine natural products. Using the above methodology (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1¬carboxylate was synthesized starting from (S)-(+)-2-methyl-2-propanesulfinamide and 3¬(benzyloxy)propanal (Scheme 5). This alcohol was further elaborated to furnish two piperidine alkaloids (S)-(+)-pelletierine and (S)-(+)-δ-coniceine. Scheme 5. Enantioselective synthesis of (S)-tert-butyl 2-(2-hydroxyethyl)piperidine-1¬carboxylate, (S)-(+)-pelletierine and (S)-(+)-δ-coniceine. Chapter III deals with the formation of barbituric acid in an aprotic medium and related mechanistic studies. The generally accepted mechanism for the formation of barbituric acid involves the nucleophilic attack of urea anion on diethyl malonate.5 This is debatable for at least two reasons: (1) the normally employed base, sodium ethoxide, is too weak to deprotonate urea and (2) diethyl malonate is more acidic than urea, so the initial deprotonation by base has to be from diethyl malonate. When diethyl malonate (DEM) enolate was treated with urea in DMF, barbituric acid was formed in 61% yield. The reaction was also extended to several 2-substituted DEM derivatives, the corresponding substituted barbituric acids being formed in reasonable yields. The reaction between diethyl 2-(ethoxycarbonyl)malonate and urea, with potassium carbonate in refluxing ethanol, led to the formation of barbituric acid. This is apparently facilitated by hydrogen bonding involving the enolate oxygen atom, which renders one of the carbonyl groups relatively electrophilic (Scheme 6). Meldrum’s acid failed to react with urea, despite its greater acidity, indicating that the reaction requires the formation of the E from of the s-trans enolate ion, in which the hydrogen bonding interaction and nucleophilic attack can occur in concert. Scheme 6. Proposed transition state for formation of Barbituric acid. Chapter IV deals with an improved Erlenmeyer synthesis with 5-thiazolone and catalytic manganese (II) acetate for aliphatic and aromatic aldehydes. A serious limitation to the classical Erlenmeyer reaction is that it generally fails in the case of aliphatic aldehydes. This chapter describes a convenient approach to this problem that extends the scope of the Erlenmeyer synthesis. The present study was aimed at developing milder conditions for the synthesis of 4¬arylidene and alkylidenethioazlactones. Thus, N-(thiobenzoyl)glycine was treated with DCC in DCM at room temperature for 10 min., according to a reported procedure, to form the thioazlactone.6 The same reaction mixture was treated with catalytic Mn(II) acetate and an equivalent of an aromatic aldehyde, to furnish the corresponding 4-arylidenethioazlactones in good yields. The scope of the reaction was extended to alphatic aldehydes also under similar reaction conditions, to obtain the 4-alkylidene thioazlactones in good to moderate yields (Scheme 7). Scheme 7. The Erlenmeyer synthesis with 5-thiazolone and manganese acetate. (for figures & structural formula pl refer pdf file)
38

Hans Hofmann

Müller-Kelwing, Karin 04 June 2021 (has links)
No description available.
39

Dramaturgies du Sublime entre théâtre et opéra (1890 – 1939) : présence et métamorphose d’un concept dans l’écriture théâtrale de Romain Rolland, Richard Beer-Hofmann, William Butler Yeats et Hugo von Hofmannsthal / Dramaturgies of the Sublime in theatre and opera (1890-1939) : presence and metamorphosis of a concept in the dramatic writings of Romain Rolland, Richard Beer-Hofmann, William Butler Yeats and Hugo von Hofmannsthal

Wesseler, Fedora 25 November 2011 (has links)
Au début du XXe siècle, la scène européenne est marquée par une recherche de nouvelles formes d’expression théâtrale, qui coïncide avec un refus du matérialisme. Le Sublime comme conscience de la dignité humaine, tel qu’il fut défini par Schiller, prend de l’importance : rempart face au changement perpétuel qui caractérise la condition humaine, le Sublime devient solidaire d’une conscience de l’Histoire et confère à l’homme une part infime d’éternité. Les efforts de W. B. Yeats pour fonder une communauté irlandaise à l’Abbey Theatre, de Max Reinhardt et de Hugo v. Hofmannsthal pour donner naissance au Festival de Salzbourg, mais aussi le projet de Romain Rolland d’un « Théâtre du Peuple », ou encore le théâtre de Richard Beer-Hofmann qui vise à réunir les individus par la mémoire d’un passé commun, manifestent la mission attribuée au théâtre. Les quatre auteurs donnent une réponse aux forces destructrices de leur temps en créant un théâtre de la dignité humaine où l’héroïsme sublime subit une métamorphose grâce à une nouvelle valeur : la compassion. L’imagination qui la rend possible devient essentielle à la dramaturgie du Sublime. Étudié en tant que principe philosophique et dramaturgique, le Sublime révèle alors sa filiation avec l’opéra et le mélodrame. Leurs interférences, déjà présentes chez Schiller, témoignent de la volonté d’élever les spectateurs au-dessus du quotidien grâce à une dramaturgie visionnaire fondée sur l’aspiration à une réalité supérieur. / European drama at the beginning of the 20th century was in search of new forms of artistic expression. In this context which coincides with the rejection of materialism, the Sublime as consciousness of human dignity gained in importance. A bulwark against the perpetual and inevitable succession of human life, the Sublime as defined by Schiller more than a century earlier attained equality with the awareness of History, lending to humankind an element of eternity. The efforts of W.B. Yeats to restore a sense of Irish community at the Abbey Theatre, those of Max Reinhardt and Hugo von Hofmannsthal who created the Salzburg Festival, but also Romain Rolland’s project of a « People’s Theatre » as well as Richard Beer-Hofmann’s plays which integrated the memory of the past, all reveal the reconciliatory function newly conferred on drama. These four authors found an answer to the destructive forces of their time by creating a drama of human dignity in which sublime heroism shifts through compassion. Its source, imagination, plays an essential role in the dramaturgy of the Sublime. The examination of the Sublime as a philosophical and dramatic principle elucidates its relationship to both opera and melodrama. The overlapping of genres can already be noticed in Schiller’s plays and proves the intention of raising the audience above the daily round, thanks to a visionary dramaturgy, based on the longing for a higher reality.

Page generated in 0.0236 seconds