Spelling suggestions: "subject:"follow"" "subject:"hollow""
121 |
Evaluation of artificial habitats for saproxylic oak invertebrates: Effects of substrate, composition and distance from dispersal sourceLarsson, Anna January 2008 (has links)
<p>Saproxylic species living in old hollow trees have low dispersal rate. Many of the species are threatened since their micro habitats are rare. To prevent some of these species from going extinct their habitats have to have the right management. In some areas artificial environment could be a solution. The aim of this study was to investigate if the insects that are dependent on tree cavities with wood mould would colonize an artificially created habitat: large wooden boxes filled with artificial wood mould placed on tree trunks. The boxes were filled with substrates like oak saw dust, oak leaves, dead hens, hen excrements, medicago (Medicago falcata flour) or potatoes. Over three years, 136 species and 10 380 specimens were caught in 47 boxes. The groups classified as specialists were in general statistically significant more often than groups classified as generalists. Dead hen was the substrate with the highest number of species, although differences were small. In conclusion, a large number of species, including red listed ones and saproxylic specialists used the boxes. A dead hen in the box gave some extra species and 1800 meters was too long for some of the species to disperse. Hence, the prospects for using artificial environments are good especially to reduce habitat availability gaps in time and space.</p>
|
122 |
Varmformade eller kallformade konstruktionsrör ur ett lönsamhetsperspektiv : Undersökning av ekonomisk differens i valet mellan VKR och KKRAndersson, Sebastian January 2015 (has links)
I Sverige kan VKR (varmformade konstruktionsrör) vara 15-23 % dyrare än KKR (kallformade konstruktionsrör) av samma tvärsnittsstorlek. Trots detta lägre pris på KKR har det uppskattats att i Svensk stålbyggnation används endast 5 % KKR, av det totala användandet av VKR och KKR. I detta examensarbete har det först undersökts vilka skillnader i egenskaper som finns mellan VKR och KKR. Därefter beräknas prisdifferensen mellan de två profiltyperna när de utsätts för en centrisk tryckkraft under likadana förhållanden. Målet är att ta reda på vilket som är det mest ekonomiskt lönsamma alternativet i valet mellan VKR och KKR. Tryckkraftskapaciteten med hänsyn till knäckning för alla profilstorlekar i Tibnor konstruktionstabeller har beräknats för varje möjlig kombination av tio olika längder mellan 1 till 10 m, tio olika laster mellan 100 till 1000 kN och två olika upplagsförhållanden, ledad i båda ändarna eller fast inspänd i båda ändarna. De KKR‑ respektive VKR-profiler med lägst pris, som håller för lasten, har jämförts och prisdifferensen mellan dessa redovisas genom att ange hur många procent dyrare, eller billigare, VKR är i jämförelse med KKR. I 80 % av mätningarna vid ledad infästning i båda ändarna blev KKR det mest ekonomiskt lönsamma alternativet. Samma siffra blev 86 % för fast inspänd i båda ändarna. Den genomsnittliga prisdifferensen hamnade på 10-11 % med ett spridningsmått på 8-12 %. Detta leder till slutsatsen att ett användande av enbart KKR kan resultera i besparingar på ca 10‑11 % i stålkostnader, jämfört med att enbart använda VKR. Utifrån prisdifferensernas variation dras därefter slutsatsen att det inte finns några tendenser på att VKR eller KKR är mer lönsam än den andra inom något specifikt längd- eller lastintervall. Rekommendationen är att i första hand optimera och använda den profiltyp som är mest lönsam för rådande förhållanden. Om en optimering inte är möjlig blir istället rekommendationen att använda KKR. / In Sweden, hot formed rectangular hollow sections (HFRHS) can be 15-23 % more expensive than cold formed rectangular hollow sections (CFRHS) of the same section size. Although the price on CFRHS is lower, estimations reveals that - from the total use of HFRHS and CFRHS in Swedish steel buildings - CFRHS is only utilized by less than 5 % compared to 95 % HFRHS. This study began by examining the differences between these two types of steel. The price difference between the two processed metal types was then calculated when both of them were subjected to a centric compressive force under the same conditions. The purpose was to compare prices and find out which one is the most economically feasible, offering a more profitable choice between HFRHS or CFRHS. The design buckling resistance of all the section sizes in Tibnor konstruktionstabeller was calculated for every possible combination out of ten different lengths between 1 m and 10 m, ten different loadings between 100 kN and 1000 kN and two different support conditions being pinned at both ends and fixed at both ends. The sections sizes of CFRHS and HFRHS that withstood the loading and held the lowest prices were compared by calculating the price difference as percentage increment or decrement between the two types of hollow sections. In 80 % of the cases, when pinned at both ends, CFRHS showed to be the most economically feasible alternative. When fixed at both ends the same number was 86 %. The average price difference was 10-11 %, showing an absolute deviation of approximately 8‑12 %. These findings conclude that using only CFRHS can result in savings of 10‑11 % from reduced costs of steel, compared to only using HFRHS. From the observed variation of the price differences another conclusion is drawn that there aren’t any tendencies showing HFRHS or CFRHS to be more economically feasible than the other in a specific interval of length or loading. The recommendation is to optimize and use the type of steel that is the most economically feasible under the current circumstances. If an optimization isn’t possible then the recommendation is to use CFRHS.
|
123 |
Zeolitic imidazolate framework (ZIF)-based membranes and sorbents for advanced olefin/paraffin separationsZhang, Chen 08 June 2015 (has links)
Propylene is one of the most important feedstocks of the petrochemical industry with an estimated 2015 worldwide demand of 100 million tons. Retrofitting conventional C3 splitters is highly desirable due to the huge amount of thermal energy required to separate propylene from propane. Membrane separation is among the alternatives that both academia and industry have actively studied during the past decades, however; many challenges remain to advance membrane separation as a scalable technology for energy-efficient propylene/propane separations.
The overarching goal of this research is to provide a framework for development of scalable ZIF-based mixed-matrix membrane that is able to deliver attractive transport properties for advanced gas separations. Zeolitic imidazolate frameworks (ZIFs) were pursued instead of conventional molecular sieves (zeolites and carbon molecular sieves) to form mixed-matrix membrane due to their intrinsic compatibility with high Tg glassy polymers. A systematic study of adsorption and diffusion in zeolitic imidazolate framework-8 (ZIF-8) suggests that this material is remarkably kinetically selective for C3 and C4 hydrocarbons and therefore promising for membrane-based gas separation and adsorptive separation. As a result, ZIF-8 was used to form mixed-matrix dense film membranes with polyimide 6FDA-DAM at varied particle loadings and it was found that ZIF-8 significantly enhanced propylene/propane separation performance beyond the “permeability-selectivity” trade-off curve for polymeric materials. Eventually, this research advanced ZIF-based mixed-matrix membrane into a scalable technology by successfully forming high-loading dual-layer ZIF-8/6FDA-DAM asymmetric mixed-matrix hollow fiber membranes with attractive propylene/propane selectivity.
|
124 |
Membrane Distillation: Parametric Studies and Numerical Simulations for Hollow Fiber and Flat Sheet MembranesKaranikola, Vasiliki January 2015 (has links)
Water scarcity is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. Water of impaired quality could be water of high salinity such as brackish groundwater. Traditionally, reverse osmosis (RO) would be chosen to desalinate the brackish groundwater, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies require enhanced expertise for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling temperature heat sources. When it is driven by solar energy it does not require highly concentrating collection devices, non-aqueous working fluids, or complex temperature control systems, nor does it require extensive operational expertise. Membrane Distillation (MD) applications, background and modeling efforts are discussed in the first part of this dissertation. Two main studies are presented in this document: Firstly, Sweeping Gas Membrane Distillation (SGMD) through a hollow fiber membrane was studied both experimentally and modeled mathematically to describe performance of SGMD and extend results to predict membrane module efficiency and secondly, SGMD through a flat sheet MD module to study the effect of membrane characteristics in combination with operational variables. A final study was conducted to examine the effect of mesh spacer insertion in flat sheet membrane module on the permeate water production.
|
125 |
Effect of shear, elongation and phase separation in hollow fiber membrane spinningOh, Kyung Hee 21 September 2015 (has links)
The spinning process of hollow fiber membranes was investigated with regards to two fundamental phenomena: flow (shear and elongation) and phase separation. Quantitative analysis of phase separation kinetics of binary (polymer/solvent) and ternary (polymer/solvent/volatile co-solvent) polymer solution was carried out with a newly developed microfluidic device. The device enables visualization of in situ phase separation and structure formation in controlled vapor and liquid environments. Results from these studies indicated that there was a weak correlation between phase separation kinetics and macroscopic defect (macrovoid) formation. In addition, the effect of shear and elongation on membrane morphology was tested by performing fiber extrusion through microfluidic channels. It was found that the membrane morphology is dominated by different factors depending on the rate of deformation. At high shear rates typical of spinning processes, shear was found to induce macrovoid formation through normal stresses, while elongation suppressed macroscopic defect formation. Furthermore, draw resonance, one of the key instabilities that can occur during fiber spinning, was investigated. It was found that draw resonance occurs at aggressive elongation condition, and could be suppressed by enhanced phase separation kinetics. These results can be used as guidelines for predicting hollow fiber membrane spinnability.
|
126 |
Synthesis of Gold Nanostructures with Optical Properties within the Near-Infrared Window for Biomedical ApplicationsGarcia Soto, Mariano de Jesús January 2014 (has links)
The work reported in this dissertation describes the design and synthesis of different gold nanoshells with strong absorption coefficients at the near-infrared region (NIR) of the spectrum, and includes preliminary studies of their use for the photo-induced heating of pancreatic cancer cells and ex vivo tissues. As the emphasis was on gold nanoshells with maximum extinctions located at 800 nm, the methods explored for their synthesis led us to the preparation of silica-core and hollow gold nanoshells of improved stability, with maximum extinctions at or beyond the targeted within the near-infrared window. The synthesis of silica-core gold nanoshells was investigated first given its relevance as one of the pioneering methods to produce gold nanostructures with strong absorption and scattering coefficients in the visible and the near-infrared regions of the spectrum. By using a classical method of synthesis, we explored the aging of the precursor materials and the effect of using higher concentrations than the customary for the reduction of gold during the shell growth. We found that the aging for one week of the as-prepared or purified precursors, namely, the gold cluster suspensions, and the seeded silica particles, along with higher concentrations of gold in the plating solution, produced fully coated nanoshells of 120 nm in size with smooth surfaces and maximum extinctions around 800 nm. Additional work carried out to reduce the time and steps in the synthesis of silica-core gold nanoshells, led us to improve the seeding step by increasing the ionic strength of the cluster suspension, and also to explore the growth of gold on tin-seeded silica nanoparticles. The synthesis of hollow gold nanoshells (HGS) of with maximum extinctions at the NIR via the galvanic replacement of silver nanoparticles for gold in solution was explored next. A first method explored led us to obtain HGS with maximum extinctions between 650 and 800 nm and sizes between 30 and 80 nm from silver nanoparticles, which were grown by the addition of silver nitrate and a mild reducer. We developed a second method that led us to obtain HGS with maximum extinctions between 750 and 950 nm by adjusting the pH of the precursor solution of the silver particles without much effort or additional steps. The last part of this work consisted in demonstrating the photo-induced heating of two biological systems containing HGS. Photothermal therapy studies of immobilized PANC1 pancreas cancer cells in well-plates were carried out with functionalized HGS. We found that cells exposed to HGS remained viable after incubation. Moreover, the cells incubated with HGS modified with mercaptoundecanoic acid and folic acid turned non-viable after being irradiated with a laser at 800 nm. The other study consisted in the laser-induced heating between 750 and 1000 nm of ex vivo tissues of chicken and pork with nanoshells injected. In comparison with non-injected tissues, it was found that the temperature at the irradiated areas with HGS increased more than 10 °C. Moreover, the extent of the heated area was broader when the laser was used at wavelengths beyond 900 nm, suggesting that the heating was due to the radiation absorbed and transformed into heat primarily by the HGS and at a lesser extent by the water in the tissue.
|
127 |
Evaluation of artificial habitats for saproxylic oak invertebrates: Effects of substrate, composition and distance from dispersal sourceLarsson, Anna January 2008 (has links)
Saproxylic species living in old hollow trees have low dispersal rate. Many of the species are threatened since their micro habitats are rare. To prevent some of these species from going extinct their habitats have to have the right management. In some areas artificial environment could be a solution. The aim of this study was to investigate if the insects that are dependent on tree cavities with wood mould would colonize an artificially created habitat: large wooden boxes filled with artificial wood mould placed on tree trunks. The boxes were filled with substrates like oak saw dust, oak leaves, dead hens, hen excrements, medicago (Medicago falcata flour) or potatoes. Over three years, 136 species and 10 380 specimens were caught in 47 boxes. The groups classified as specialists were in general statistically significant more often than groups classified as generalists. Dead hen was the substrate with the highest number of species, although differences were small. In conclusion, a large number of species, including red listed ones and saproxylic specialists used the boxes. A dead hen in the box gave some extra species and 1800 meters was too long for some of the species to disperse. Hence, the prospects for using artificial environments are good especially to reduce habitat availability gaps in time and space.
|
128 |
Tales of a Hollow Earth. Tracing the Legacy of John Cleves Symmesin Antarctic Exploration and Fiction.Chaplow, Lester Ian January 2011 (has links)
This thesis examines the hollow-earth theories of John Cleves Symmes and seeks to recognise and restore both his memory and his legacy. I outline Symmes’ theory that the Earth is hollow and habitable within, and accessible via holes at the North and South Poles, consider the impact of this theory on the commencement of the United States Antarctic Exploration program, and demonstrate its lasting legacy within the genre of Symmesian hollow-earth fiction.
Previous scholarship has been intermittent, disparate and oddly contextualised, often assigning both Symmes and his theory to the world of the “weird and wonderful.” In order to study Symmes’ legacy, I synthesise previous scholarship and show the continuing presence of his theory – at times unrecognised and unacknowledged – in fiction.
Commencing with a description of the series of publications in which Symmes publicised his idea, this thesis looks at his theory’s reception, with a discussion of several books and letters published in response to the theory – from contemporary times through to the current day. In determining the legacy of his theory, rather than the theory itself, I look at possible and probable sources for Symmes’ idea, and place it on the continuum of natural philosophy and science from the thirteenth century so as to set Symmes’ announcement in the perspective of its time. I then address Symmes’ influence on the United States Congress, which culminated in the United States Exploring Expedition of 1838-1842. Finally, I examine Symmes’ legacy in fiction, commencing with an extensive discussion of Symzonia, which some posit was authored by Symmes, and continuing through to the present.
I find that while Symmes’ theory, and the ensuing debate about a hollow earth, may have advanced the speed with which the United States commenced Antarctic exploration, with time this exploration would probably have happened anyway. His greatest legacy is through the establishment of a body of hollow-earth fiction based around the fictional hole which now bears his name; “Symmes’ Hole” lives on in literature to the current day.
|
129 |
Modified mesoporous silica membranes for separation applicationsKim, Hyung Ju 27 August 2014 (has links)
The main theme of this dissertation is the fabrication and analysis of modified mesoporous silica membranes for separation applications. Synthesis methods for mesoporous silica membranes have been developed to enhance the transport performance and quality of the membranes, such as permeability, pore volume, and surface area. Then, synthesized membranes were modified with different organic groups to tailor selectivity in separations. The collected studies of modified mesoporous silica membranes showed that appropriate functionalization on newly synthesized novel membranes leads to promising structural and permeation properties. First, a seeded growth method was developed for synthesis of MCM-48 membranes on alumina supports, thereby extending the seeded growth technique used for zeolite membranes to mesoporous silica membrane synthesis. The surface properties of the MCM-48 membranes were then modified by silylation with hexamethyldisilazane (HMDS). In comparison to MCM-48 membranes previously synthesized by the in situ growth technique, much less silica infiltration into the alumina support was observed. The pore structure of the MCM-48 membranes demonstrated that a large accessible pore volume was available for molecular permeation and pore modification to tailor selectivity. The gas permeation properties of the calcined and silylated MCM-48 membranes were consistent with a Knudsen-like mechanism, albeit with a substantial influence of gas-solid interactions in the mesopores. The silylated MCM-48 membranes were evaluated for pervaporative separation of ethanol (EtOH), methyl ethyl ketone (MEK), and ethyl acetate (EA) from their dilute aqueous solutions. The synthesized membranes exhibited high pervaporative separation factors and organic fluxes. The selective separation of organic/water mixtures with MCM-48 membranes were attributed to both the organophilic nature of the surface and the effective pore size of the silylated mesopores. Next, the synthesis and organic/water separation properties of mesoporous silica membranes supported on low-cost and scalable polymeric (polyamide-imide) hollow fibers and modified by trimethylsilylation with HMDS was studied. Thin, defect-free membranes that exhibited high gas permeances consistent with Knudsen-like diffusion through the mesopores were prepared. Silylation of these membranes did not affect the integrity of the mesoporous silica structure and the underlying polymeric hollow fiber, but led to capping of the surface silanol groups in the mesopores with trimethylsilyl groups. The silylated mesoporous membranes were evaluated for pervaporative separation of EtOH, MEK, EA, iso-butanol, and n-butanol from their dilute aqueous solutions. The membranes showed higher separation factors than those of flat membranes, along with high organic fluxes. The large increase in hydrophobicity of the membranes upon silylation allowed upgrading of the feed mixtures to permeate streams with considerably higher organic content. The selective separation of organic/water mixtures with the fiber-supported mesoporous silica membranes was attributed to both the organophilic nature of the surface (yielding good adsorption selectivity) and the effective pore size of the silylated mesopores (giving good fluxes). Comparison with other types of organic/water separation membranes revealed that the present silylated membrane platform shows good promise for use in organic/water separation applications due to its high flux, scalable and low-cost fabrication methodology, and good separation factors that can be further enhanced by tailoring the mesopore modification chemistry. Further, the gas transport properties of aziridine-functionalized mesoporous silica membranes on polymeric hollow fibers have also investigated. The mesoporous membranes were amine-functionalized with aziridine and their transport properties were studied to understand the effects of surface functionalization on gas separations. This new hybrid aminosilica membrane showed interesting and counter-intuitive N₂ selective permeation properties in dry CO₂/N₂ separations. Detailed characterization of the membrane structure and its permeation behavior showed that such behavior was due to the strong adsorption of CO₂, leading to reduced gas flux because of CO₂-induced amine crosslinking in the mesopores. This hyper-branched aminosilica membrane showed CO₂ selective properties when applied to humid gas permeation. Water molecules in the humid gas affected the adsorption of CO₂ molecules by causing a lower degree of crosslinking, allowing facilitated transport of CO₂.
|
130 |
Highly productive ester crosslinkable composite hollow fiber membranes for aggressive natural gas separationsMa, Canghai 01 November 2012 (has links)
Despite intrinsically high separation performance, conventional polymeric membranes suffer from CO₂ induced plasticization, which reduces CO₂/CH₄ separation efficiency significantly. Covalent ester-crosslinking can improve the plasticization resistance by controlling the segmental chain mobility in the polymer; however, only relatively thick selective skin layers and lower separation productivity have been reported to date. On the other hand, the high cost of crosslinkable polymers makes the approach challenging, especially for large-scale gas separations which require large membrane areas with high feed pressures. Dual-layer hollow fiber spinning can be used to reduce the cost of membrane production by integrating a low-cost supporting core polymer with the expensive crosslinkable sheath polymer. However, the complexity of interfacial interaction between the sheath/core layers and subsequent crosslinking required can delaminate the sheath/core layers and collapse the core layer polymer. This can reduce mechanical strength and the separation productivity significantly. This work aimed to develop thin-skinned high-performing ester-crosslinked hollow fiber membranes with improved CO₂ plasticization resistance. The skin layer thickness of hollow fibers was first optimized by simultaneous optimization of the polymer dope and spinning process variables. Moreover, this study also addresses the solutions of challenging in transitioning the monolithic hollow fiber to composite hollow fiber format. The ester-crosslinked hollow fibers were subjected to high feed pressures and high-level contaminants to probe their CO₂ plasticization and hydrocarbon antiplasticization resistance, respectively. The resultant ester-crosslinked monolithic hollow fibers show significantly reduced skin layer thickness and improved separation productivity under extremely challenging operation conditions. They also demonstrate strong stability under high feed pressures and reversibility after contaminant exposure. Moreover, this study presents a newly discovered core layer material, Torlon®, which demonstrates excellent compatibility with the crosslinkable polymer and superior thermal stability during crosslinking without sheath/core layer delamination or collapse. The characterization under aggressive feed conditions clearly suggests that ester-crosslinked composite hollow fibers can achieve high separation performance and reduce membrane cost simultaneously. This provides a significant advance in state of the art for natural gas separations under realistic operation environments
|
Page generated in 0.0314 seconds