• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 15
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 82
  • 82
  • 44
  • 23
  • 21
  • 18
  • 14
  • 13
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avaliação do desempenho operacional de um sistema de ultrafiltração para tratamento de água utilizando um coagulante inorgânico e um derivado de tanino

Bidone Filho, Jacques Lara January 2016 (has links)
Novas tecnologias para o tratamento de água potável vêm sendo empregadas na medida em que a utilização de sais de alumínio tem apresentado correlação com doenças de envelhecimento mental nos seres humanos. Os coagulantes orgânicos de origem vegetal podem substituir de forma satisfatória estes sais no tratamento convencional de água potável. A utilização de processos combinados utilizando membranas de ultrafiltração com coagulação é uma alternativa aos métodos convencionais de potabilização. Com este cenário, o presente trabalho tem como objetivo comparar o desempenho operacional de uma planta piloto de ultrafiltração com membranas submersas para produção de água potável a partir do Lago Guaíba, utilizando o coagulante convencional poli (cloreto de alumínio) (PAC) e um coagulante orgânico oriundo da casca da Acácia Negra (Acacia maernsii) Tanfloc SG, com a análise da morfologia, massa molar de corte e permeabilidade hidráulica da membrana e com análises da água bruta e filtrada. As membranas de fibra oca de Poliéter Sulfona (PES) com massa molar de corte de 50 kDa, permearam sob pressão fixa de -500 mbar, com ação de borbulhamento em testes de 140 horas para avaliação da performance e testes de 10 horas para avaliação da qualidade de permeado. Os resultados indicaram semelhança no desempenho operacional dos dois coagulantes quanto à redução da permeância hidráulica relativa, e a qualidade do permeado indicou que mesmo com a ausência de flocos no tanque de alimentação, não houve passagem significativa de coagulante para o permeado. Os parâmetros de potabilidade indicaram o enquadramento da água produzida nos padrões organolépticos na atual Portaria 2914/2011 do Ministério da Saúde. / New technologies to water treatment have been applied as the aluminum salts commonly used have shown correlations with mental diseases in human beings. The organic coagulants from natural sources can satisfactorily replace those inorganic salts in drinking water treatment. The hybrid processes join ultrafiltration membranes with coagulation are alternatives to the standard potabilization. The present study compares the operational behavior of a submersed ultrafiltration (UF) pilot plant producing drinking water from Guaíba Lake, using poli (aluminum chloride) (PAC) and an organic coagulant extracted from Acacia maernsii Tanfloc SG. The membrane and the permeate were investigated. The polyether sulfone hollow fiber membranes filtered with a -500 mbar constant vacuum and air bubbles through 140 hours for performance test and for 10 hour for permeate quality verification. The results showed similarity of the relative hydraulic permeability of the two coagulants, and even with the absence of visible flocs in the membrane tank, there were no significant coagulant carryover through the membrane. The analytical data pointed that the water produced with both coagulants had concentration bellow the Brazilian organoleptic standards, according to the Portaria 2914/2011 of the Health Ministry.
12

Carbon Dioxide Transfer Characteristics of Hollow-Fiber, Composite Membranes

January 2018 (has links)
abstract: Carbon dioxide (CO2) levels in the atmosphere have reached unprecedented levels due to increasing anthropogenic emissions and increasing energy demand. CO2 capture and utilization can aid in stabilizing atmospheric CO2 levels and producing carbon-neutral fuels. Utilizing hollow fiber membranes (HFMs) for microalgal cultivation accomplishes that via bubbleless gas-transfer, preventing CO2 loss to the atmosphere. Various lengths and geometries of HFMs were used to deliver CO2 to a sodium carbonate solution. A model was developed to calculate CO2 flux, mass-transfer coefficient (KL), and volumetric mass-transfer coefficient (KLa) based on carbonate equilibrium and the alkalinity of the solution. The model was also applied to a sparging system, whose performance was compared with that of the HFMs. Typically, HFMs are operated in closed-end mode or open-end mode. The former is characterized by a high transfer efficiency, while the latter provides the advantage of a high transfer rate. HFMs were evaluated for both modes of operation and a varying inlet CO2 concentration to determine the effect of inert gas and water vapor accumulation on transfer rates. For pure CO2, a closed-end module operated as efficiently as an open-end module. Closed-end modules perform significantly worse when CO2-enriched air was supplied. This was shown by the KLa values calculated using the model. Finally, a mass-balance model was constructed for the lumen of the membranes in order to provide insight into the gas-concentration profiles inside the fiber lumen. For dilute CO2 inlet streams, accumulation of inert gases -- nitrogen (N2), oxygen (O2), and water vapor (H2O) -- significantly affected module performance by reducing the average CO2 partial pressure in the membrane and diminishing the amount of interfacial mass-transfer area available for CO2 transfer. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2018
13

MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS

Linck, Nicholas W. 01 January 2018 (has links)
Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue. In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed in a polyethersulfone (PES) matrix. The effect of MWCNT loading on membrane separation performance was examined. Notably, a distinct enhancement in selectivity was measured for several gas pairs (including O2/N2) at relatively low MWCNT loading, with a peak in selectivity observed at 0.1 wt% loading relative to PES. In addition, no post-treatment (e.g. PDMS caulking) was required to achieve selectivity in these membranes. In contrast, neat PES membranes and those containing greater than 0.5 wt.% MWCNT showed gas selectivity characteristic of Knudsen diffusion through pinhole defects. These results suggested that at low loading, the presence of MWCNTs suppressed the formation of surface defects in the selective layer in flat sheet mixed matrix membranes. Additionally, a bench-scale, single-filament hollow fiber membrane spinning line was designed and purpose-built at the University of Kentucky Center for Applied Energy Research (CAER). Hollow fiber membrane spinning capability was developed using polyethersulfone (PES) solution dopes, and the process was expanded to include polysulfone (PSf) as well as mixed matrix membranes. The effects of key processing parameters, including the ratio of bore to dope velocities, the spinning air gap length, and the draw-down ratio, were systematically investigated. Finally, direct hollow fiber analogues to flat sheet mixed matrix membranes were characterized. Consistent with the flat sheet experiments, the mixed matrix hollow fiber membranes showed a local maximum in selectivity at a nominal loading of 0.1 wt.% MWCNT relative to the polymer, suggesting that the pinhole suppression effect introduced by MWCNTs was not limited to flat sheet membrane casting. The development of asymmetric hollow fiber mixed matrix membrane processing and testing capability at the UK Center for Applied Energy Research provides a platform for the further development of gas separation membranes. Using the tools developed through this work, it is possible to further push the frontiers of mixed matrix gas separation by expanding the capability to include more polymers, inorganic fillers, and post treatment processes which previously have been focused primarily on the flat sheet membrane geometry.
14

Experimental Studies on CO<sub>2</sub> Absorption in Hollow Fiber Membrane Contactor

Lu, Yuexia January 2010 (has links)
<p>Membrane gas absorption technology is considered as one of the promising alternatives to conventional techniques for CO<sub>2</sub> separation from the flue gas of fossil fuels combustion. As a hybrid approach of chemical absorption and membrane separation, it may offer a number of important features, including operational flexibility, compact structure, linear scale up and predictable performance. The main challenge is the additional membrane mass transfer resistance, especially when this resistance increases due to the absorbent intruding into the membrane pores.</p><p>In this thesis, the experimental was set up to investigate how the operating parameters affect the absorption performance when using absorbent in hollow fiber contactor, and to obtain the optimal range of operation parameters for the designated membrane gas absorption system . During 20 days’ continuous experiment, we observed that the CO<sub>2</sub> mass transfer rate decreases significantly following the operating time, which is attributed to the increase of membrane mass transfer resistance resulting from partial membrane wetting.</p><p>To better understand the wetting evolution mechanism, the immersion experiments were carried out to assume that the membrane fibers immersed in the absorbents would undergo similar exposure as those used in the membrane contactor. Various membrane characterization methods were used to illustrate the wetting process before and after the membrane fibers were exposed to the absorbents. The characterization results showed that the absorbent molecules diffuse into the polypropylene (PP) polymer during the contact with the membrane, resulting in the swelling of the membrane. In addition, the effects of operating parameters such as immersion time, CO<sub>2</sub> loading, as well as absorbent type on the membrane wetting were investigated in detail. Finally, based on the analysis results, methods to smooth the membrane wetting were discussed. It was suggested that improving the hydrophobicity of PP membrane by surface modification may be an effective way to improve the membrane long-term performance.</p><p>Modification of the polypropylene membrane by depositing a rough layer of PP was carried out in order to improve the non-wettability of membrane. The comparison of long-term CO<sub>2</sub> absorption performance by PP membranes before and after modification proves that the modified polypropylene membranes retained higher hydrophobicity than the untreated polypropylene membrane. Therefore modification is likely to be more suitable for use in membrane gas absorption contactors for CO<sub>2</sub> separation, particularly over long operation time.</p>
15

Methods for Preclinical Evaluation of Cytotoxic Drugs : With Special Reference to the Cyanoguanidine CHS 828 and Hollow Fiber Method

Hassan, Saadia Bashir January 2004 (has links)
<p>The novel cyanoguanidine CHS 828 has shown promising antitumor activity in many in vitro and in vivo studies. </p><p>The long-term 14 days in vitro hollow fiber cultures, where tumor cells from different tumor cell lines were cultured inside semipermeable fibers, were more resistant to CHS 828 and other cytotoxic drugs than the shorter-term 3 days cultures. CHS 828 was generally more effective against haematological than solid tumor cells from both cell lines and patients samples. </p><p>In vivo, the hollow fibers were implanted into immunocompetent rats and the pharmacokinetics, tumor response and/or toxicity (pharmacodynamics) of CHS 828 were successfully assayed. CHS 828 showed higher activity in this model when a more protracted schedule was used. The quantitative relationships between dose, plasma concentration and response (PK/PD model) developed for CHS 828 explained this phenomenon partly by dose-dependent fraction absorbed and partly by a schedule-dependent pharmacodynamic effect.</p><p>Modelling of the in vitro CHS 828 and standard cytotoxic drugs concentration-time effect data in different tumor cell types and characterization of pattern of change of the potency and the slope of the concentration-time effect curves were performed. The results suggest two different mechanisms of action for CHS 828 and that CHS 828 cytotoxicity may depend on the schedule used.</p><p>The NF-kB pathway that regulates the transcription of anti-apoptotic genes proved to be inhibited by CHS 828 in different tumor cell lines and the inhibition was correlated to the cell death induced by this agent. CHS 828 did not seem to induce the NF-kB inhibition by affecting the proteasome activity. </p><p>The in vitro and in vivo hollow fiber methods were also used successfully to evaluate the new paclitaxel formulation, Pacliex. Pacliex had a similar activity to that of the clinically used formulation Taxol®.</p>
16

Methods for Preclinical Evaluation of Cytotoxic Drugs : With Special Reference to the Cyanoguanidine CHS 828 and Hollow Fiber Method

Hassan, Saadia Bashir January 2004 (has links)
The novel cyanoguanidine CHS 828 has shown promising antitumor activity in many in vitro and in vivo studies. The long-term 14 days in vitro hollow fiber cultures, where tumor cells from different tumor cell lines were cultured inside semipermeable fibers, were more resistant to CHS 828 and other cytotoxic drugs than the shorter-term 3 days cultures. CHS 828 was generally more effective against haematological than solid tumor cells from both cell lines and patients samples. In vivo, the hollow fibers were implanted into immunocompetent rats and the pharmacokinetics, tumor response and/or toxicity (pharmacodynamics) of CHS 828 were successfully assayed. CHS 828 showed higher activity in this model when a more protracted schedule was used. The quantitative relationships between dose, plasma concentration and response (PK/PD model) developed for CHS 828 explained this phenomenon partly by dose-dependent fraction absorbed and partly by a schedule-dependent pharmacodynamic effect. Modelling of the in vitro CHS 828 and standard cytotoxic drugs concentration-time effect data in different tumor cell types and characterization of pattern of change of the potency and the slope of the concentration-time effect curves were performed. The results suggest two different mechanisms of action for CHS 828 and that CHS 828 cytotoxicity may depend on the schedule used. The NF-kB pathway that regulates the transcription of anti-apoptotic genes proved to be inhibited by CHS 828 in different tumor cell lines and the inhibition was correlated to the cell death induced by this agent. CHS 828 did not seem to induce the NF-kB inhibition by affecting the proteasome activity. The in vitro and in vivo hollow fiber methods were also used successfully to evaluate the new paclitaxel formulation, Pacliex. Pacliex had a similar activity to that of the clinically used formulation Taxol®.
17

Gas Separation by Poly(ether block amide) Membranes

Liu, Li January 2008 (has links)
This study deals with poly(ether block amide) (PEBA) (type 2533) membranes for gas separation. A new method was developed to prepare flat thin film PEBA membranes by spontaneous spreading of a solution of the block copolymer on water surface. The membrane formation is featured with simultaneous solvent evaporation and solvent exchange with the support liquid, i.e. water. The formation of a uniform and defect-free membrane was affected by the solvent system, polymer concentration in the casting solution and temperature. Propylene separation from nitrogen, which is relevant to the recovery of propylene from the de-gassing off-gas during polypropylene manufacturing, was carried out using flat PEBA composite membranes formed by laminating the aforementioned PEBA on a microporous substrate. The propylene permeance was affected by the presence of nitrogen, and vice versa, due to interactions between the permeating components. Semi-empirical correlations were developed to relate the permeance of a component in the mixture to the pressures and compositions of the gas on both sides of the membrane, and the separation performance at different operating conditions was analyzed in terms of product purity, recovery and productivity on the basis of a cross flow model. To further understand gas permeation behavior and transport mechanism in the membranes, sorption, diffusion, and permeation of three olefins (i.e., C2H4, C3H6, and C4H8) in dense PEBA membranes were investigated. The relative contribution of solubility and diffusivity to the preferential permeability of olefins over nitrogen was elucidated. It was revealed that the favorable olefin/nitrogen permselectivity was primarily attributed to the solubility selectivity, whereas the diffusivity selectivity may affect the permselectivity negatively or positively, depending on the operating temperature and pressure. At a given temperature, the pressure dependence of solubility and permeability could be described empirically by an exponential function. The limiting solubility at infinite dilution was correlated with the reduced temperature of the permeant. The separation of volatile organic compounds (VOCs), which are more condensable than olefin gases, from nitrogen stream by the thin film PEBA composite membranes for potential use in gasoline or other organic vapour emission control was also studied. The membranes exhibited good separation performance for both binary VOC/N2 and multi-component VOCs/N2 gas mixtures. The permeance of N2 in the VOC/N2 mixtures was shown to be higher than pure N2 permeance due to membrane swelling induced by the VOCs dissolved in the membrane. The effects of feed VOC concentration, temperature, stage cut, and permeate pressure on the separation performance were investigated. Additionally, hollow fiber PEBA/polysulfone composite membranes were prepared by the dip coating technique. The effects of parameters involved in the procedure of polysulfone hollow fiber spinning and PEBA layer deposition on the permselectivity of the resulting composite membranes were investigated. Lab scale PEBA hollow fiber membrane modules were assembled and tested for CO2/N2 separation with various flow configurations using a simulated flue gas (15.3% carbon dioxide, balance N2) as the feed. The shell side feed with counter-current flow was shown to perform better than other configurations over a wide range of stage cuts in terms of product purity, recovery and productivity.
18

Gas Separation by Poly(ether block amide) Membranes

Liu, Li January 2008 (has links)
This study deals with poly(ether block amide) (PEBA) (type 2533) membranes for gas separation. A new method was developed to prepare flat thin film PEBA membranes by spontaneous spreading of a solution of the block copolymer on water surface. The membrane formation is featured with simultaneous solvent evaporation and solvent exchange with the support liquid, i.e. water. The formation of a uniform and defect-free membrane was affected by the solvent system, polymer concentration in the casting solution and temperature. Propylene separation from nitrogen, which is relevant to the recovery of propylene from the de-gassing off-gas during polypropylene manufacturing, was carried out using flat PEBA composite membranes formed by laminating the aforementioned PEBA on a microporous substrate. The propylene permeance was affected by the presence of nitrogen, and vice versa, due to interactions between the permeating components. Semi-empirical correlations were developed to relate the permeance of a component in the mixture to the pressures and compositions of the gas on both sides of the membrane, and the separation performance at different operating conditions was analyzed in terms of product purity, recovery and productivity on the basis of a cross flow model. To further understand gas permeation behavior and transport mechanism in the membranes, sorption, diffusion, and permeation of three olefins (i.e., C2H4, C3H6, and C4H8) in dense PEBA membranes were investigated. The relative contribution of solubility and diffusivity to the preferential permeability of olefins over nitrogen was elucidated. It was revealed that the favorable olefin/nitrogen permselectivity was primarily attributed to the solubility selectivity, whereas the diffusivity selectivity may affect the permselectivity negatively or positively, depending on the operating temperature and pressure. At a given temperature, the pressure dependence of solubility and permeability could be described empirically by an exponential function. The limiting solubility at infinite dilution was correlated with the reduced temperature of the permeant. The separation of volatile organic compounds (VOCs), which are more condensable than olefin gases, from nitrogen stream by the thin film PEBA composite membranes for potential use in gasoline or other organic vapour emission control was also studied. The membranes exhibited good separation performance for both binary VOC/N2 and multi-component VOCs/N2 gas mixtures. The permeance of N2 in the VOC/N2 mixtures was shown to be higher than pure N2 permeance due to membrane swelling induced by the VOCs dissolved in the membrane. The effects of feed VOC concentration, temperature, stage cut, and permeate pressure on the separation performance were investigated. Additionally, hollow fiber PEBA/polysulfone composite membranes were prepared by the dip coating technique. The effects of parameters involved in the procedure of polysulfone hollow fiber spinning and PEBA layer deposition on the permselectivity of the resulting composite membranes were investigated. Lab scale PEBA hollow fiber membrane modules were assembled and tested for CO2/N2 separation with various flow configurations using a simulated flue gas (15.3% carbon dioxide, balance N2) as the feed. The shell side feed with counter-current flow was shown to perform better than other configurations over a wide range of stage cuts in terms of product purity, recovery and productivity.
19

Zeolitic imidazolate framework (ZIF)-based membranes and sorbents for advanced olefin/paraffin separations

Zhang, Chen 08 June 2015 (has links)
Propylene is one of the most important feedstocks of the petrochemical industry with an estimated 2015 worldwide demand of 100 million tons. Retrofitting conventional C3 splitters is highly desirable due to the huge amount of thermal energy required to separate propylene from propane. Membrane separation is among the alternatives that both academia and industry have actively studied during the past decades, however; many challenges remain to advance membrane separation as a scalable technology for energy-efficient propylene/propane separations. The overarching goal of this research is to provide a framework for development of scalable ZIF-based mixed-matrix membrane that is able to deliver attractive transport properties for advanced gas separations. Zeolitic imidazolate frameworks (ZIFs) were pursued instead of conventional molecular sieves (zeolites and carbon molecular sieves) to form mixed-matrix membrane due to their intrinsic compatibility with high Tg glassy polymers. A systematic study of adsorption and diffusion in zeolitic imidazolate framework-8 (ZIF-8) suggests that this material is remarkably kinetically selective for C3 and C4 hydrocarbons and therefore promising for membrane-based gas separation and adsorptive separation. As a result, ZIF-8 was used to form mixed-matrix dense film membranes with polyimide 6FDA-DAM at varied particle loadings and it was found that ZIF-8 significantly enhanced propylene/propane separation performance beyond the “permeability-selectivity” trade-off curve for polymeric materials. Eventually, this research advanced ZIF-based mixed-matrix membrane into a scalable technology by successfully forming high-loading dual-layer ZIF-8/6FDA-DAM asymmetric mixed-matrix hollow fiber membranes with attractive propylene/propane selectivity.
20

High-solids, mixed-matrix hollow fiber sorbents for CO₂ capture

Pandian Babu, Vinod Babu 08 June 2015 (has links)
Post-combustion carbon capture, wherein the CO2 produced as a result of coal combustion is trapped at the power plant exhaust, is seen as a bridging technology to reduce CO2 emissions and combat climate change. This capture process will however impose a parasitic load on the power plant and technologies need to be developed to minimize this energy penalty. This research focuses on a technology which uses solid sorbents fashioned into a hollow fiber form that allows water-moderated thermal cycling as a means of trapping CO2 from flue gas. While hollow fiber technology has intrinsic advantages over competing liquid amine and packed bed technologies, the materials used to fabricate hollow fibers and the fabrication process itself need to be optimized in order to result in competitive, robust hollow fiber sorbents. This dissertation focuses on the material selection process for each component of the hollow fiber platform and discusses ways to optimize the fiber and barrier layer formation. Different materials were evaluated to function as the solid sorbent, the matrix polymer and the barrier layer; and eventually their performance was measured against past work in this area.

Page generated in 0.0402 seconds