• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles Voies de Régulation contrôlant l'Homéostasie Lipidique et l'Inflammation dans le Macrophage Humain au cours de l'Athérosclérose / New insights in signaling pathways controlling lipid homeostasis and inflammation in human macrophages during atherosclerosis

Superville, Alexandre 25 September 2014 (has links)
L’accumulation de cellules spumeuses dans l’intima des artères est le point critique de l’initiation de l’athérosclérose. L’accumulation de cholestérol et l’activation des voies pro-inflammatoires sont responsables de l’acquisition par les macrophages de ce phénotype délétère. Les dérivés oxydés du cholestérol accumulés vont stimuler les récepteurs nucléaires LXR et incidemment l’efflux de cholestérol athéroprotecteur, tandis que la phagocytose de cholestérol cristallisé dans la lésion causera une perturbation du trafic vésiculaire qui activera l’inflammasome NLRP3, verrou de l’inflammation IL-1. Cette étude a pour but de décrypter ces voies dans le macrophage humain. La stimulation de l’efflux de cholestérol par un agoniste LXR dans le macrophage humain m’a est médiée par l’activation transcriptionnelle LXRα-dépendante d’ARL7 - qui permet le transport du cholestérol libre de la membrane des endosomes et lysosomes aux radeaux lipidiques – et du transporteur ABCA1 – l’exportant vers les HDL, lipoprotéines athéroprotectrices. L’activation du complexe multi-protéique NLRP3 dans le macrophage, et la sécrétion des cytokines délétères IL-1β et IL-18, est également réprimée par l’agoniste LXR. L’activation des cathepsines B et L par l’enzyme AEP est aussi nécessaire pour l’activation de NLRP3 par des cristaux. Inactiver l’AEP protège ainsi contre le développement de l’athérosclérose. Ces travaux ont démontré la nécessité des études chez l’humain pour la mise en évidence des mécanismes moléculaires et la nécessité d’intégrer les signalisations lipidiques et inflammatoires étroitement liées dans la cellule spumeuse. / Foam cell accumulation in arterial walls is the critical initiating event of atheroma plaque development. Macrophages acquire this phenotype by cholesterol ester accumulation and pro-inflammatory signaling pathways activation. Oxydized form of cholesterol activates LXR and subsequently atheroprotective cellular cholesterol efflux. In parallel, crystallized cholesterol phagocytosis will impair vesicular traffic, activating NLRP3 and deleterious IL-1 cytokines release. Here we describe further those pathways in human macrophages and to evidence new key factors in atherosclerosis development. First, stimulation of cellular cholesterol efflux to ApoA-I and HDL from human macrophage by LXR agonist is LXRα-dependent. Transcriptional activation of ARL7 increases cholesterol transport from endolysosomal membrane to efflux-prone plasmic membrane pools, lipid rafts. From there, cholesterol will be exported on ApoA-I containing lipoproteins by ABCA1 transporter, whose expression is stimulated by LXRα agonists as well. Cholesterol crystals phagocytose will lead to inflammasome NLRP3 activation, leading to pro-atherogenous IL-1β and IL-18 secretion. We first showed LXR agonist GW3965 role in repressing transcription of NLRP3 partners. Also, we evidenced the importance of cathepsin B and L maturation by asparagin endopeptidase (AEP) in human macrophages, and atheroprotective properties of AEP silencing. Overall, this work demonstrated the necessity of using human models to confirm murine data about molecular mechanisms. Also, it is important to integrate lipid homeostasis and inflammation signaling in foam cells, for there is a strong molecular link between both.
2

Analyse de l'homéostasie des lipides membranaires d'Arabidopsis thaliana par une stratégie de génétique chimique exploitant une nouvelle classe d'analogues du diacylglycérol

Boudière, Laurence 20 December 2013 (has links) (PDF)
Le MGDG (monogalactosyldiacylglycerol) et le DGDG (digalactosyldiacylglycerol) sont les lipides les plus abondants des membranes du chloroplaste. Ils sont synthétisés exclusivement dans l'enveloppe plastidiale par l'action des MGDG synthases (MGD1, MGD2 et MGD3) et des DGDG synthases (DGD1 et DGD2). Les galactolipides sont essentiels pour la structuration des photosystèmes et la biogenèse des thylacoïdes. En carence de phosphate, les galactolipides deviennent une source de lipides pour composer certaines membranes en dehors du chloroplaste. Suivant une stratégie de criblage pharmacologique à haut débit, une nouvelle molécule appelée galvestine-1 a pu être identifiée et caractérisée comme un inhibiteur des MGDG synthases. La galvestine-1 agit par compétition avec le diacylglycérol. Cet outil moléculaire permet donc de perturber le système complet constitué par l'ensemble des réactions de synthèses, de conversions et de trafics lipidiques, aboutissant à cet état stable que nous appelons homéostasie des lipides. Le but de cette thèse est de mettre en évidence, à l'aide de la galvestine-1, de nouveaux acteurs ou nouvelles voies permettant l'établissement de l'homéostasie lipidique à l'échelle de la cellule végétale. Pour cela, j'ai réalisé un criblage de mutants EMS (ethyl methanesulfonate) dans le but d'isoler des mutants résistants à la galvestine-1 et d'identifier les gènes mutés conférant cette résistance. Des données transcriptomiques (Affymetrix genome array genechip, ATH1) d'Arabidopsis thaliana traité en présence de galvestine-1 ont par ailleurs été obtenues avant le début des travaux de thèse. Ces données ont permis de cibler des gènes dont l'expression variait et possiblement impliqués dans l'homéostasie lipidique. En parallèle de l'approche sans a priori, j'ai donc réalisé une étude suivant une stratégie de gènes candidats sur ALA10, un gène codant pour une flippase putative, sur-exprimé après traitement à la galvestine-1 et en carence de phosphate. Le second volet de cette thèse vise donc à comprendre la relation entre l'expression d'ALA10 et les gènes impliqués dans la synthèse des galactolipides chez la plante.
3

Analyse de l'homéostasie des lipides membranaires d'Arabidopsis thaliana par une stratégie de génétique chimique exploitant une nouvelle classe d'analogues du diacylglycérol / Analysis of membrane glycerolipid metabolism in Arabidopsis based on a chemical genetic strategy using inhibitors of galactolipid biosynthesis

Boudière, Laurence 20 December 2013 (has links)
Le MGDG (monogalactosyldiacylglycerol) et le DGDG (digalactosyldiacylglycerol) sont les lipides les plus abondants des membranes du chloroplaste. Ils sont synthétisés exclusivement dans l'enveloppe plastidiale par l'action des MGDG synthases (MGD1, MGD2 et MGD3) et des DGDG synthases (DGD1 et DGD2). Les galactolipides sont essentiels pour la structuration des photosystèmes et la biogenèse des thylacoïdes. En carence de phosphate, les galactolipides deviennent une source de lipides pour composer certaines membranes en dehors du chloroplaste. Suivant une stratégie de criblage pharmacologique à haut débit, une nouvelle molécule appelée galvestine-1 a pu être identifiée et caractérisée comme un inhibiteur des MGDG synthases. La galvestine-1 agit par compétition avec le diacylglycérol. Cet outil moléculaire permet donc de perturber le système complet constitué par l'ensemble des réactions de synthèses, de conversions et de trafics lipidiques, aboutissant à cet état stable que nous appelons homéostasie des lipides. Le but de cette thèse est de mettre en évidence, à l'aide de la galvestine-1, de nouveaux acteurs ou nouvelles voies permettant l'établissement de l'homéostasie lipidique à l'échelle de la cellule végétale. Pour cela, j'ai réalisé un criblage de mutants EMS (ethyl methanesulfonate) dans le but d'isoler des mutants résistants à la galvestine-1 et d'identifier les gènes mutés conférant cette résistance. Des données transcriptomiques (Affymetrix genome array genechip, ATH1) d'Arabidopsis thaliana traité en présence de galvestine-1 ont par ailleurs été obtenues avant le début des travaux de thèse. Ces données ont permis de cibler des gènes dont l'expression variait et possiblement impliqués dans l'homéostasie lipidique. En parallèle de l'approche sans a priori, j'ai donc réalisé une étude suivant une stratégie de gènes candidats sur ALA10, un gène codant pour une flippase putative, sur-exprimé après traitement à la galvestine-1 et en carence de phosphate. Le second volet de cette thèse vise donc à comprendre la relation entre l'expression d'ALA10 et les gènes impliqués dans la synthèse des galactolipides chez la plante. / MGDG (monogalactosyldiacylglycerol) and DGDG (digalactosyldiacylglycerol) are the most abundant membrane lipids of the chloroplast. They are synthesized exclusively in the chloroplast envelope by the action of MGDG synthases (MGD1, MGD2 and MGD3) and DGDG synthases (DGD1 and DGD2). Galactolipids are known to be essential for the structure (and function) of the photosystems and for the biogenesis of thylakoids. In phosphate deprivation, galactolipids become a source of lipid for other cell membranes, outside the chloroplast. Based on a high throughput chemical screen, a new molecule called galvestine-1 has been identified and characterized as an inhibitor of MGDG synthases. Galvestine-1 competes with the binding of the diacylglycerol substrate to MGDs. This molecular tool can be used to disturb the system comprising all lipid biosynthesis reactions, conversions, and lipid trafficking, responsible for the membrane lipid steady state observed at the whole cell level, or membrane lipid homeostasis. Perturbation of the system occurs at the level of MGDG synthases. The aim of this thesis is to use the effect of galvestine-1 to identify new actors or new pathways involved in the control of lipid homeostasis in plant cells. To this purpose, I designed and performed a screening of a collection of EMS (ethyl methanesulfonate) mutants, in order to isolate galvestine-1-resistant mutants and to identify mutated genes conferring this resistance. Transcriptomic data (Affymetrix genome array genechip, ATH1) of Arabidopsis thaliana treated in the presence of galvestine-1 had been obtained prior to the PhD project. These data were used to identify genes whose expression varied and possibly involved in lipid homeostasis. Based on a complementary candidate gene approach, I focused on Ala10, a putative flippase, which gene is over-expressed after treatment with galvestine-1 and following phosphate deprivation. The purpose of this second part of this thesis is to understand the relationship between the expression of ALA10 and genes involved in galactolipid synthesis in plants.

Page generated in 0.0698 seconds