• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasticités synaptiques à court et long terme via la modulation de la forme du potentiel d'action axonal dans les réseaux corticaux / Short and long term synaptic plasticities via action potential shape modulation in cortical networks

Zbili, Mickael 28 October 2016 (has links)
La transmission synaptique dans les corticaux est généralement décrite comme un phénomène de « tout ou rien » ou digital. Un Potentiel d'Action (PA) est émis dans la cellule présynaptique, provoquant le relargage de neurotransmetteurs au niveau du bouton présynaptique et, en conséquence, une dépolarisation transitoire de la cellule postsynaptique (Potentiel Post-Synaptique Excitateur ou PPSE). Cependant, de nombreuses études ont démontrées que la forme du PA présynaptique dépend de l'activité sous liminaire précédant son émission. En effet, si la cellule présynaptique est dépolarisée durant 5 à 10 s avant l'émission du PA, ce dernier s'élargit, ce qui provoque une augmentation du relargage de neurotransmetteurs et de l'amplitude du PPSE. Ainsi, la transmission synaptique dépend d'un phénomène digital, le PA, dont la forme est modulée analogiquement. On parle de transmission Analogique-Digitale. L'élargissement du PA et l'augmentation de la transmission synaptique suite à une longue dépolarisation de la transmission synaptique est nommée Facilitation Analogique-Digital due à la Dépolarisation (FADD). Durant cette thèse, nous nous sommes posé 3 questions principales. Quel est le mécanisme biophysique de la FADD ? Existe-il des Facilitations Analogique Digitale dépendante de modulation de l'amplitude du PA et non de sa largeur ? Les modulations de la forme du PA sont-elles toutes à court terme (de la milliseconde à la seconde) ou existe-t-il des modulations de la forme du PA à long terme (plusieurs jours) ? Pour répondre à la première question, nous avons enregistré des paires de neurones CA3 de l'hippocampe et avons dépolarisé la cellule présynaptique durant 10 s avant l'émission du PA. Nous avons observé une FADD de 30 % qui était supprimée par le blocage pharmacologique des canaux potassiques axonaux Kv1. Ces canaux sont responsables de la phase de repolarisation du PA et ont la propriété de s'inactiver durant de longues dépolarisations. Nous en avons conclu qu'entre les neurones CA3, la FADD était due à l'inactivation des canaux Kv1 pendant la dépolarisation précédant le PA, ce qui provoque un ralentissement de la phase de repolarisation du PA et ainsi un élargissment du PA. Afin de répondre à la seconde question, nous avons enregistré des paires de neurones CA3 dans l'hippocampe. Nous avons observé qu'une courte hyperpolarisation (50 ms) du neurone présynaptique avant l'émission du potentiel d'action provoquait une augmentation de l'amplitude du PA entrainant un accroissement du relargage de neurotransmetteur et de la taille du PPSE. Nous avons nommé ce phénomène FADH pour Facilitation Analogique-Digitale induite par Hyperpolarisation. La FADH est due à récupération de l'inactivation de canaux sodiques responsables de l'amplitude du PA quand le neurone présynaptique est hyperpolarisé, ce qui augmente leur disponibilité. Enfin, pour répondre à la troisième question, nous avons bloqué la transmission synaptique entre les neurones CA3 durant 3 jours. Cela a entrainé une augmentation compensatoire de la transmission synaptique entre les paires de neurones CA3. Il est important de noter que cette augmentation compensatoire est due à la régulation négative des canaux Kv1 entrainant un élargissement du PA. Ainsi, la forme du PA peut-être moduler sur le long terme et participer à la plasticité synaptique. En conclusion, nous avons démontré que le PA n'a pas une forme fixée mais que cette dernière est modulée sur des échelles de temps allant de la dizaine de ms à plusieurs, permettant aux réseaux neuronaux d'élargir leur capacité de transfert d'information. / Generally, the synaptic transmission in cortical networks is described as an « all-or-none » or digital phenomenon. An Action Potential (AP) is emitted in the presynaptic cell entailing the release of neurotransmitters at presynaptic terminal and, consequently, a transient depolarization of the postsynaptic cell (Excitatory Post-Synaptic Potential or EPSP). However, several studies showed that the presynaptic AP shape depend on the subthreshold activity before his occurrence. Indeed, if the presynaptic cell is depolarized during 5 to 10 seconds before the AP emission, the AP is getting broader which leads to an increase in neurotransmitters release and EPSP amplitude. Therefore, the synaptic transmission depends on a digital phenomenon, the AP, whose shape is modulated in an analogic way, the so-called Analog-Digital transmission. The increase in AP width and synaptic transmission following a long depolarization of the presynaptic cell is named Analog Digital Facilitation induced by depolarization (d-ADF). During this thesis, we asked 3 main questions. What is the biophysic mechanism of d-ADF? Are there ADFs depending on AP amplitude modulation? Are the modulations of the AP shape all short term modulations (ms to s) or are there some long term AP shape modulations (days)? To answer the first question, we recorded pairs of hippocampal CA3 neurons and we depolarized the presynaptic cell during 10 ms before AP emission. We observed a d-ADF of 30 % which was suppressed by the phamarcological blockade of axonal potassium channels Kv1. These channels are responsible of the AP repolarization phase and have the property to inactivate during long depolarization. We concluded that the d-ADF at the CA3-CA3 synapse is due to inactivation of Kv1 channels during the depolarization preceding the AP which entails a slowing of the AP repolarization phase and a broadening of the AP. In order to answer the second question, we recorded pairs of hippocampal CA3 neurons. We observed that a short hyperpolarization of the presynaptic neuron (50 ms) before the AP emission entailed an increase of the AP amplitude leading to an increase of neurotransmitters release and EPSP amplitude. We named this phenomenon hyperpolarization induced Analog-Digital Facilitation (h-ADF). The h-ADF is due to the recovery from inactivation of sodium channels responsible of AP amplitude when the presynaptic neuron is hyperpolarized. Finally, to answer the third question, we blocked the synaptic transmission between CA3 neurons for 3 days. This provoked a compensatory increase of synaptic transmission between pairs of CA3 neurons. Interestingly, this compensatory increase is due to the downregulation of Kv1 channels leading to a broadening of the AP. Therefore, the AP shape can be modulated within days and participate to synaptic plasticity. In conclusion, we showed that the AP is not digital but that its shape is modulated within time scales going from the ms to several days, increasing information transfer ability of neuronal networks.
2

ADAM30 et métabolisme de l'APP : implication dans le développement physiopathologique de la maladie d'Alzheimer / ADAM30 and APP metabolism : an involment in Alzheimer's disease physiopathological development

Letronne, Florent 17 December 2014 (has links)
L’accumulation cérébrale progressive de peptides amyloïdes générés à partir du clivage du précurseur du peptide amyloïde (APP) par les sécrétases est un mécanisme central de la maladie d’Alzheimer. C’est pourquoi, améliorer la compréhension de la régulation et de l’homéostasie du métabolisme de l’APP est devenu primordial. Partant de ce constat, nous avons supposé qu’une partie de la réponse pourrait être apportée par la caractérisation de nouveaux acteurs du métabolisme de l’APP. De part leurs rôles cruciaux dans le cerveau (développement, plasticité et réparations) et dans le métabolisme de l’APP (α-sécrétases), les ADAMs sont des protéines d’intérêt dont certaines fonctions ou rôles restent à déterminer. Précédemment, par une approche transcriptomique ciblant la famille des ADAMs dans des cerveaux de patients et de contrôles, ADAM30 a été retrouvée sous-exprimée dans le cerveau des patients atteints de la pathologie. Dans deux modèles cellulaires nous avions constaté que la sous-expression d’ADAM30 entraînait une augmentation de tous les produits du métabolisme de l’APP comme chez les patients. Le résultat opposé a été obtenu lors de la sur-expression d’ADAM30 dans ces cellules. Pour tenter de répliquer ces résultats dans un modèle plus proche de la physiopathologie humaine, nous avons développé un modèle de souris triples transgéniques surexprimant l’APPSweInd et ADAM30 de manière conditionnelle. Dans ce modèle nous avons observé et mesuré une diminution des dépôts amyloïdes dans le cerveau des souris exprimant ADAM30. Dans un second temps puisqu’il avait été montré au laboratoire qu’ADAM30 ne module pas l’activité des sécrétases et ne clive pas directement l’APP, nous avons cherché à déterminer les substrats d’ADAM30 dans le cadre du métabolisme de l’APP. Par une approche systématique nous avons pu déterminer que la Cathepsine D (CTSD) et l’Insuline Receptor Substrat 4 (IRS4) sont deux substrats potentiels d’ADAM30. Dans nos modèles cellulaires et de souris, nous avons pu constater qu’ADAM30 est capable de cliver et d’activer la CTSD. L’activité de la CTSD semble nécessaire pour l’action d’ADAM30 sur le métabolisme de l’APP. Nous avons pu déterminer que l’action spécifique d’ADAM30 pour la CTSD est dépendante de la séquence d’adressage au lysosome située dans l’extrémité C-terminale de l’APP. Comme la CTSD est une protéine Lysosomale, ADAM30 pourrait favoriser spécifiquement l’activation de la CTSD augmentant ainsi la dégradation de l’APP au sein de la voie endosome/lysosome. Ce mécanisme limiterait l’entrée de l’APP dans son métabolisme et donc la production de peptides amyloïdes. Afin de mieux comprendre la spécificité d’action d’ADAM30 pour la CTSD et l’APP, nous avons commencé à travailler sur le rôle potentiel d’IRS4 et la relation entre la voie de signalisation de l’Insuline et le métabolisme de l’APP. Nos travaux nous ont donc permis de mettre en évidence un nouvel acteur du métabolisme de l’APP, ADAM30, intervenant dans la régulation et la dégradation de ce dernier et ainsi d’améliorer notre compréhension des mécanismes de régulations fins impliqués dans le processus physiopathologique de la maladie d’Alzheimer. / Progressive intra-cerebral accumulation of amyloid peptides formed after sequential cleavage of the amyloid peptide precursor (APP) by secretases , is a central mecanism for Alzheimer’s disease. Therefore, a better understanding of APP regulation and homeostasy is now crucial. With this background, we postulate that the characterization of new actors in the APP metabolism could provide a more subtle understanding of this APP metabolism and trafficking. From their obvious implication in brain (development, plasticity and repair) and in APP metabolism (α-secretases), ADAMs (A Disintegrin And Metalloprotease) are an important protein proteins family which still have some undetermined function or role. Previously, a transcriptomic approach targeting ADAMs family bas been done at the laboratory on Alzheimer’s patient or control brains and found ADAM30 as under-expressed in Alzheimer’s patient brains. On cellular models, we confirmed that ADAM30 under-expression was associate with an increase in production/secretion of all the APP metabolim byproducts. Opposite results were found with ADAM30 over-expression. To replicate those results in another model closest to human pathophysiology, we have developed a triple transgenic mice model over-expressing APPSweInd and conditionally over-expressing ADAM30. In this model, we have observed and measured a decrease in amyloid deposits in mice brains over-expressing ADAM30. Secondly, because ADAM30 did not modulate secretase activities and did not cleave APP directly, we decided to determine ADAM30 substrats in the APP metabolism context. With a systematic approach, we have determined that Cathepsin D (CTSD) and Insulin Receptor Substrat 4 (IRS4) are two ADAM30 potential substrats. In our cellular models, we have found that ADAM30 is able to cleave and activate CTSD. This CTSD activity is required for ADAM30 action on APP metabolism. We have determined that ADAM30 specific action for CTSD is dependent on lysosome adressing sequence localised in APP C-terminal part. CTSD is a lysosomal protein and so ADAM30 would make CTSD specific activation easier. This mecanism would be able to increase APP degradation in endosome/lysosome pathway and reduce APP entry in its metabolism. To better understand ADAM30 specific action on CTSD and APP, we begin to investigate the potential role of IRS4 and the relation between insulin signaling pathway ans APP metabolism. Combined together, those data suggest that ADAM30 is a new APP metabolism actor, involved in an early APP regulation and degradation pathway dependent on lysosome activation. This study participate in a better understanding of the fine mecanism regulations involved in Alzheimer’s disease pathophysiological process.

Page generated in 0.0293 seconds