• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 46
  • 46
  • 31
  • 31
  • 31
  • 31
  • 20
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

CIS/SOCS Proteins in Growth Hormone Action: A Dissertation

Du, Ling 01 October 2000 (has links)
CIS/SOCS (cytokine-inducible SH2 protein/suppressor of cytokine signaling) are a family of proteins that are thought to act as negative regulators of signaling by erythropoetin, interleukin-6 and other cytokines whose receptors are related to the growth hormone receptor (GHR), and like growth hormone (GH), signal through the JAK/STAT pathway. We examined the possibility that CIS/SOCS proteins may also be involved in GH signaling, in particular, in termination of the transient insulin-like effects of GH. mRNAs for CIS, SOCS3, and to a lesser extent SOCS1 were detectable by Northern blot analysis of rat adipocyte total RNA, and the expression of CIS and SOCS3 was markedly increased 30 min after incubation with 500 ng/ml hGH. Both CIS and SOCS3 were detected in adipocyte extracts by immunoprecipitation and immunoblotting with their corresponding antisera. GH stimulated the tyrosine phosphorylation of a 120 kDa protein (p120) that was co-precipitated from adipocyte extracts along with αCIS and detected in Western blots with phospho-tyrosine antibodies. However, no tyrosine phosphorylated proteins in these cell extracts were immunoprecipitated with antibodies to CIS3/SOCS3. p120 was later identified as the GHR based on the observations that two GHR antibodies recognized p120 in scale-up experiments and that p120 and the GHR share several characteristics, including their molecular weights, tyrosine phosphorylation upon GH stimulation, interaction with CIS, similar extent of glycosylation as judged by electrophoretic mobility shift after Endo F digestion, comparable mobility shifts upon thrombin digestion, and N-terminal histidine-tagging. The findings, however, do not rule out the possibility that there might be other tyrosine phosphorylated 120 kDa protein(s) that interact with CIS and contribute to the p120 signal, as well as the GHR. Further studies of the association of CIS with the GHR revealed that CIS might selectively interact with multiply tyrosine phosphorylated forms of the GHR, and these tyrosines are likely located near the carboxyl end of the GHR. Overexpression of CIS partially inhibited GH-induced STAT5 phosphorylation in CHO cells. Studies in freshly isolated and GH-deprived (sensitive) adipocytes revealed that the abundance of CIS does not correlate with the termination of the insulin-like effects of GH or the emergence of refractoriness. Neither the association of CIS with the GHR nor the tyrosine phosphorylation status of the GHR, JAK2 and STAT5 appear responsible for refractoriness in adipocytes. These data imply that some negative regulators other than CIS might contribute to the termination of GH-induced insulin-like effects in adipocytes.
32

IMPACT OF 17-BETA ESTRADIOL AND MODERATE-INTENSITY EXERCISE ON MESENTERIC ARTERIAL FUNCTION OF UC DAVIS TYPE-2 DIABETES MELLITUS RATS

Razan, Md Rahatullah 01 January 2021 (has links)
The studies in this dissertation were designed to investigate the impacts of estrogen (17-β estradiol/E2) and moderate-intensity exercise (MIE) on the mesenteric arterial (MA) function of the University of California Davis type-2 diabetes mellitus (UCD-T2DM) Rat model. Our recent report suggests that diabetes impairs MA vasorelaxation in both sexes of the UCD-T2DM model. Particularly, we reported that MA from prediabetic male rats showed a greater impairment compared to that in prediabetic females. However, when females become diabetic, they exhibit a greater vascular dysfunction than males. Therefore, the aim of the first study was to investigate whether female sex hormone, specifically E2, preserves the MA vasorelaxation in female UCD-T2DM rats at the early prediabetic state. For this study, age-matched healthy Sprague Dawley (SD) and prediabetic female UCD-T2DM rats were ovariectomized and subcutaneously implanted with either a placebo or E2 pellet for 45 days. Regular aerobic exercise is a well-known therapeutic intervention for endothelial dysfunction, insulin resistance, and cardiovascular disease (CVD) risk in diabetes. However, there are still debates about the duration, intensity, and underlying mechanisms of benefits of exercise against deleterious metabolic consequences in diabetic patients. In the second study outlined in this dissertation, we examined the impact of exercise training on vascular function and wall structure of the UCD-T2DM male rats. Age-matched male diabetic and SD control rats were randomly divided into sedentary and exercise-trained groups. The exercise-trained groups ran on a treadmill for eight weeks (1hr/day, 5days per week). For both studies (Studies I & II), metabolic parameters and MA responses to vasodilator and vasocontractile agents were determined. Furthermore, the expression of molecules associated with vascular signaling were also analyzed. The specific aims of our studies were to investigate whether E2 and moderate-intensity exercise (MIE) alter the 1) endothelium-dependent vasorelaxation (EDV) and vasoconstriction 2) relative contribution of endothelium-derived relaxing factors (EDRF) to vasorelaxation, and 3) expression of proteins associated with vascular signaling, in MA of UCD-T2DM rats. In the first study, we demonstrated that acetylcholine (ACh)-induced vasorelaxation was impaired in MA of ovariectomized (OVX) prediabetic UCD-T2DM rats. Our data also showed that E2 replacement improved MA relaxation in OVX prediabetic group to a similar level to that in control groups. Inhibition of cyclooxygenase (COX) by indomethacin (Indo) did not significantly affect the vascular responses in any groups, suggesting a minor role of COX metabolites in MA relaxation in the experimental groups. Inhibition of nitric oxide (NO) synthase (NOS) by L-NAME reduced vasorelaxation to ACh in control groups, but it did not completely abolish the vasorelaxation. We also showed that in control (healthy) groups, both NO and endothelium-derived hyperpolarizing factor (EDHF)-type relaxation were dominant in the MA relaxation of placebo and E2 treated rats. However, in prediabetic groups, L-NAME completely abolished the vasorelaxation, regardless of E2 treatment, suggesting a relative shift from EDHF-type relaxation to only NO-mediated relaxation in these groups. Furthermore, the sensitivity of MA to NO was significantly impaired in OVX prediabetic group, but E2 treatment enhanced the MA sensitivity to NO. Overall, our data suggest that a greater vasorelaxation in the E2 treated OVX prediabetic group could be partly attributed to the elevated role of NO or improved sensitivity of MA to NO in this group. The second study demonstrated that ACh-induced vasorelaxation of MA was significantly impaired in sedentary diabetic (DS) male rats. MIE significantly enhanced MA vasorelaxation in the exercise-trained diabetic (DE) group compared to the DS. However, no significant differences were observed between the vasorelaxation of control sedentary (CS) and control exercise-trained groups (CE). Inhibition of COX enhanced maximal vasorelaxation response (Rmax) to ACh in DS arteries suggesting an elevated contractile COX contribution in MA of this group which could possibly be due to the observed increase in COX expression in the DS group. Unlike the DS group, inhibition of COX did not affect the vasorelaxation responses to ACh in the DE group. The addition of L-NAME resulted in a reduction in ACh-induced relaxation of MA from both DS and DE groups. However, the effect of L-NAME was more prominent in the DS group compared to the DE group, suggesting a major contribution of NO in DS arteries. On the other hand, a preserved role of NO with an enhanced EDHF-mediated relaxation was observed in the MA vasorelaxation of the DE group. Our data on the elevated small conductance calcium-activated potassium channel (SKCa) expression level in MA taken from the DE group compared to that in the DS group may suggest a role for SKCa in increased EDHF-type relaxation in the DE group. Furthermore, DS arteries exhibited a higher contractile response, myogenic tone, and wall thickness than those in MA of DE. Overall, our data suggest that MIE reduced myogenic tone (DE vs. DS) and improved EDV in mesenteric arteries of diabetic rats, possibly via a shift from contractile COX activity to both NO and EDHF-type relaxation. In conclusion, the data generated in study-I suggest that estrogen may protect prediabetic female MA from early vascular dysfunction, possibly by elevating the contribution of NO to vasorelaxation as a compensatory mechanism to the loss of EDHF-type relaxation in this group. Although the results of the current study are in agreement with our previous report demonstrating a possible protective effect of female sex hormones in the MA function at prediabetic state, additional studies are needed to establish the specific role of E2 in the progression of vascular dysfunction in the diabetic state. Lastly, an intriguing observation of study-II was that MIE improved vasorelaxation and prevented the loss of EDHF-type relaxation in diabetic arteries. This was in addition to the changes induced to the wall thickness and myogenic tone in arteries of UCD-T2DM males. Given that sex differences play an important role in cardiovascular physiology, additional studies are needed to establish the specific role of MIE on vascular dysfunction in UCD-T2DM female rats and its underlying mechanisms.
33

An Examination of the Hypothalamo-neurohypophysial System of the Rat: Restoration of the Vasopressinergic System

DiBenedetto, Lynn M. 01 December 1997 (has links)
The hypothalamo-neurohypophysial model has been studied for many years. Of note, when the axons of the magnocellular, peptidergic neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) are transected or crushed, varying degrees of polydipsia and polyuria ensue as the result of measurable losses of vasopressin (AVP) within the organism's circulation. Following insult, these hypothalamic cells show a remarkable capacity to reorganize themselves within the proximal areas of the infundibular stalk and median eminence and form what has come to be known as a new 'mini neural lobe' . While the surviving neurons sprout new projections toward the level of the external zone, vascular hypertrophy is marked throughout the new neurohypophysis and new neurohemal contacts have been identified (at the ultrastructural level) associated with these vessels. In parallel with this vascular hypertrophy is a measurable re-release of vasopressin into the circulation. This new 'mini neural lobe' now has the morphological and physiological appearance of an intact neural lobe and is capable of releasing AVP in response to changes in water balance. While the ability of these axons to reorganize is more characteristic of the peripheral nervous system (PNS), this model system provides an unique opportunity to study axonal regeneration of the central nervous system (CNS). Not only the mechanisms underlying the restoration of AVP function following axotomy but the extent to which various magnocellular neuron populations are involved in the regenerative process may also be analyzed. Before attempting to identify putative markers associated with this regenerative process, it was necessary to carefully characterize the system following axonal injury. Using Sprague Dawley rats, we repeated previous physiological studies which had examined the intake of water and output of urine following hypophysectomy. In addition, we also correlated the restoration of water balance with the return of AVP release, as measured by radioimmunoassay. These data defined a temporal framework in which magnocellular AVP regeneration occurs. As a result of repeating these physiological studies, we noted several inconsistencies between other previously published work. First, the time course of AVP recovery did not agree with other published results, nor did the first appearance of AVP immunoreactivity . We did not observe a complete recovery of water balance as previously reported and the degree of magnocellular death was inconsistent with other reports. In light of these many conflicting observations between several historical reports and our own results, we did a basic physiological re-characterization of the hypothalamo-neurohypohysial system following hypophysectomy. By means of immunohistochemistry, we also demonstrated the re-appearance of AVP within the new the 'mini neural lobe ' concomitant with the increased appearance of synapsin I, a marker associated with the presence of mature and presumably functioning synapses to be no sooner than 28 days following surgical removal of the hypophysis. Immunocytochemistry was also used in conjunction with retrograde fluorescent labeling to extend the previous studies and include a 2-D analysis of cell survival throughout the PVN and SON following hypophysectomy or neurohypophysectomy. As reported previously, magnocellular neuronal loss is greater within the SON, particularly the hypophysectomized subject, and less so within the PVN; again with the greater loss in the PVN of the hypophysectomized animal. Based upon our observations and other recent reports, we suggest the possibility that some cells of the hypothalamo-neurohypophysial system or some other extrahypothalamic cell population may be capable of expressing vasopressin in response to neurohypophysectomy. We provide initial evidence that glial cells of the third ventricle may indeed be involved. Finally, one of the ultimate goals of using this as a model system of CNS regeneration is to understand the underlying mechanisms and components essential to central nervous tissue regeneration. Toward that end I have been involved with the initial studies to optimize an adenovirus delivery system which will be capable of incorporating various putative neurotransmitter and/or peptide anti-sense messages, being injected into the neurohypophysis and transported back into the cells of the hypothalamo-neurohypophysial system. Once these antisense sequences are expressed by the cells following axotomy, the sequence of expression of various proteins in response to injury may be elucidated.
34

TXNIP is a Mediator of ER Stress-Induced β-Cell Inflammation and Apoptosis: A Dissertation

Oslowski, Christine M. 11 May 2012 (has links)
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia. The pathogenesis of these diseases involves β-cell dysfunction and death. The primary function of β-cells is to tightly regulate the secretion, production, and storage of insulin in response to blood glucose levels. In order to manage insulin biosynthesis, β-cells have an elaborate endoplasmic reticulum (ER). The ER is an essential organelle for the proper processing and folding of proteins such as proinsulin. Proteins fold properly when the ER protein load balances with the ER folding capacity that handles this load. Disruption of this ER homeostasis by genetic and environmental stimuli leads to an accumulation of misfolded and unfolded proteins, a condition known as ER stress. Upon ER stress, the unfolded protein response (UPR) is activated. The UPR is a signaling network that aims to alleviate ER stress and restore ER homeostasis promoting cell survival. Hence, the UPR allows β-cells to handle the physiological fluctuations of insulin demand. However upon severe unresolvable ER stress conditions such as during diabetes progression, the UPR switches to pathological outputs leading to β-cell dysfunction and apoptosis. Severe ER stress may also trigger inflammation and accumulating evidence suggests that inflammation also contributes to β-cell failure, but the mechanisms remain elusive. In this dissertation, we demonstrate that thioredoxin interacting protein (TXNIP) mediates ER stress induced β-cell inflammation and apoptosis. During a DNA microarray analysis to identify novel survival and death components of the UPR, we identified TXNIP as an interesting proapoptotic candidate as it has been linked to glucotoxicity in β-cells. During our detailed investigation, we discovered that TXNIP is selectively expressed in β-cells of the pancreas and is strongly induced by ER stress through the IRE1α and PERK-eIF2α arms of the UPR and specifically its transcription is regulated by activating transcription factor 5 (ATF5) and carbohydrate response element binding protein (ChREBP) transcription factors. As TXNIP has been shown to activate the Nod-like receptor protein 3 (NLRP3) inflammasome leading to the production of the inflammatory cytokine interleukin-1β (IL- 1β), we hypothesized that perhaps TXNIP has a role in IL-1β production under ER stress. We show that ER stress can induce IL-1β production and that IL-1β is capable of binding to IL-1 type 1 receptor (IL-1R1) on the surface of β-cells stimulating its own expression. More importantly, we demonstrate that TXNIP does indeed play a role in ER stress mediated IL-1β production through the NLRP3 inflammasome. Furthermore, we also confirmed that TXNIP is a mediator of β-cell apoptosis under ER stress partially through IL-1β signaling. Collectively, we provide significant novel findings that TXNIP is a component of the UPR, mediates IL-1β production and autostimulation, and induces cell death under ER stress in β-cells. It is becoming clear that TXNIP has a role in the pathogenesis of diabetes and is a link between ER stress, oxidative stress and inflammation. Understanding the molecular mechanisms involved in TXNIP expression, activity, and function as we do here will shed light on potential therapeutic strategies to tackle diabetes.
35

Prediction, Prevention and Treatment of Virally Induced Type 1 Diabetes: A Dissertation

Kruger, Annie J. 29 April 2009 (has links)
Several viral infections have been associated with human type 1 diabetes (T1D), although it has proven difficult to unequivocally establish them as causative agents. In rodent models, however, viruses have definitely been established to cause T1D. The treatment of weanling BBDR rats with the combination of a TLR3 ligand, pIC, and an ssDNA parvovirus, KRV, precipitates T1D in nearly 100% of rats within a short, predictable timeframe. In this dissertation, we utilized the BBDR rat model to (1) identify early serum biomarkers that could predict T1D precipitated by viral induction and (2) test the efficacy of leptin, a therapeutic agent, which may have the ability to prevent diabetes onset, reverse new onset diabetes and prevent autoimmune recurrence of diabetes in rats transplanted with syngeneic islet grafts. Identification of biomarkers has long served as an invaluable tool for disease prediction. In BBDR rats, we identified an acute phase response protein, haptoglobin, as a potential biomarker for pIC + KRV induced T1D using the global proteomic profiling techniques, 2D gel analysis and iTRAQ. Upon validating this biomarker, we determined that haptoglobin was sensitive in predicting T1D in the pIC + KRV model, in which nearly 100% of the rats become diabetic, but not in models where diabetes expression was variable (KRV only or RCMV only models). However, analysis of the serum kinetics of haptoglobin and its functional capacity in the blood has given us insights into the potential role of early phase reactants in modulating virally mediated T1D. An alternative means of regulating T1D pathogenesis is through leptin. Leptin is a hormone with pleotropic roles in the body, particularly affecting energy metabolism and immune regulation. These characteristics make leptin an intriguing candidate for therapeutic testing in T1D models. Our studies have determined that high doses of leptin delivered via an adenovirus (AdLeptin) or alzet pump delivery system can prevent diabetes in > 90% of rats treated with pIC + KRV. We further showed that serum hyperleptinemia was associated with decreased body weight, decreased non-fasting serum insulin levels and lack of islet insulitis in pIC + KRV treated rats pretreated with AdLeptin compared with those pretreated with PBS. We discovered that hyperleptinemia induced a profound decrease in splenic weight and splenic cellularity, including reductions in CD4+ and CD8+ T cells, DC/MACs and B cells. These findings indicate a potential mechanism whereby hyperleptinemia protects rats from virally induced T1D through the promotion of peripheral immunosuppression. Among pIC + KRV treated rats, we have also found that leptin therapy can reverse hyperglycemia in a subset of new onset diabetics for up to 20 days. In the absence of exogenous insulin, leptin treatment of new onset diabetics prevented the rapid weight loss associated with osmotic diuresis, as well as the ketosis observed in vehicle treated diabetic rats. Overall, these findings point to the therapeutic value of leptin in maintaining glycemic control and preventing ketosis in an insulin deficient state, in the absence of exogenous insulin therapy. Additionally, we have also determined that AdLeptin treatment can prolong the survival of syngeneic islets transplanted into diabetic BBDR rats for up to 50 days post transplant. Although hyperleptinemia generated by AdLeptin was unable to prevent insulitis into islet grafts, this insulitis did not appear to be destructive as islet grafts continued to stain positively for insulin when compared with control rats whose grafts succumbed to recurrent autoimmunity. In the various therapeutic settings in which we have tested leptin treatment, we have found this hormone to have significant beneficial effects. These findings merit further evaluation of leptin as a therapeutic agent in human T1D.
36

Cooperating Events in Core Binding Factor Leukemia Development: A Dissertation

Madera, Dmitri 10 March 2011 (has links)
Leukemia is a hematopoietic cancer that is characterized by the abnormal differentiation and proliferation of hematopoietic cells. It is ranked 7th by death rate among cancer types in USA, even though it is not one of the top 10 cancers by incidence (USCS, 2010). This indicates an urgent need for more effective treatment strategies. In order to design the new ways of prevention and treatment of leukemia, it is important to understand the molecular mechanisms involved in development of the disease. In this study, we investigated mechanisms involved in the development of acute myeloid leukemia (AML) that is associated with CBF fusion genes. The RUNX1 and CBFB genes that encode subunits of a transcriptional regulator complex CBF, are mutated in a subset (20 – 25%) of AML cases. As a result of these mutations, fusion genes called CBFB-MYH11 and RUNX1-ETO arise. The chimeric proteins encoded by the fusion genes provide block in proliferation for myeloid progenitors, but are not sufficient for AML development. Genetic studies have indicated that activation of cytokine receptor signaling is a major oncogenic pathway that cooperates in leukemia development. The main goal of my work was to determine a role of two factors that regulate cytokine signaling activity, the microRNA cluster miR-17-92 and the thrombopoietin receptor MPL, in their potential cooperation with the CBF fusions in AML development. We determined that the miR-17-92 miRNA cluster cooperates with Cbfb-MYH11 in AML development in a mouse model of human CBFB-MYH11 AML. We found that the miR-17-92 cluster downregulates Pten and activates the PI3K/Akt pathway in the leukemic blasts. We also demonstrated that miR-17-92 provides an anti-apoptotic effect in the leukemic cells, but does not seem to affect proliferation. The anti-apoptotic effect was mainly due to activity of miR-17 and miR-20a, but not miR-19a and miR-19b. Our second study demonstrated that wild type Mpl cooperated with RUNX1-ETO fusion in development of AML in mice. Mpl induced PI3K/Akt, Ras/Raf/Erk and Jak2/Stat5 signaling pathways in the AML cells. We showed that PIK3/Akt pathway plays a role in AML development both in vitro and in vivo by increasing survival of leukemic cells. The levels of MPL transcript in the AML samples correlated with their response to thrombopoietin (THPO). Moreover, we demonstrated that MPL provides pro-proliferative effect for the leukemic cells, and that the effect can be abrogated with inhibitors of PI3K/AKT and MEK/ERK pathways. Taken together, these data confirm important roles for the PI3K/AKT and RAS/RAF/MEK pathways in the pathogenesis of AML, identifies two novel genes that can serve as secondary mutations in CBF fusions-associated AML, and in general expands our knowledge of mechanisms of leukemogenesis.
37

Adipocyte Insulin-Mediated Glucose Transport: The Role of Myosin 1c, and a Method for <em>in vivo</em> Investigation: A Dissertation

Hagan, G. Nana 17 December 2008 (has links)
The importance of insulin delivery and action is best characterized in Type 2 Diabetes, a disease that is becoming a pandemic both nationally and globally. Obesity is a principal risk factor for Type 2 Diabetes, and adipocyte function abnormalities due to adipose hypertrophy and hyperplasia, have been linked to obesity. Numerous reports suggest that the intracellular and systemic consequences of adipocyte function abnormalities include adipocyte insulin resistance, enhanced production of free fatty acids, and production of inflammatory mediators. A hallmark of adipocyte insulin sensitivity is the stimulation of glucose transporter isoform 4 (GLUT4) trafficking events to promote glucose uptake. In the Type 2 diabetic and insulin resistant states the mechanism behind insulin-stimulated GLUT4 trafficking is compromised. Therefore, understanding the role of factors involved in glucose-uptake in adipose tissue is of great importance. Studies from our laboratory suggest an important role for the unconventional myosin, Myo1c, in promoting insulin-mediated glucose uptake in cultured adipocytes. Our observations suggest that depletion of Myo1c in cultured adipocytes results in a significant reduction in the ability of adipocytes to take up glucose following insulin treatment, suggesting Myo1c is required for insulin-mediated glucose uptake. A plausible mechanism by which Myo1c promotes glucose uptake in adipocytes has been suggested by further work from our laboratory in which expression of fluorescently-tagged Myo1c in cultured adipocytes induces significant membrane ruffling at the cell periphery, insulin-independent GLUT4 translocation to the cell periphery, and accumulation of GLUT4 in membrane ruffling regions. Taken together Myo1c seems to facilitate glucose uptake through remodeling of cortical actin. In the first part of this thesis I, in collaboration with others, uncovered a possible mechanism through which Myo1c regulates adipocyte membrane ruffling. Here we identified a novel protein complex in cultured adipocytes, comprising Myo1c and the mTOR binding partner, Rictor. Interestingly our studies in cultured adipocytes suggest that the Rictor-Myo1c complex is biochemically distinct from the Rictor-mTOR complex of mTORC2. Functionally, only depletion of Rictor but not Myo1c results in decreased Akt phosphorylation at serine 473, but depletion of either Rictor or Myo1c results in compromised cortical actin dynamic events. Furthermore we observed that whereas the overexpression of Myo1c in cultured adipocytes causes remarkable membrane ruffling, Rictor depletion in cells overexpressing Myo1c significantly reduces these ruffling events. Taken together our findings suggest that Myo1c, in conjunction with Rictor, modulates cortical actin remodeling events in cultured adipocytes. These findings have implications for GLUT4 trafficking as GLUT4 has been previously observed to accumulate in Myo1c-induced membrane ruffles prior to fusion with the plasma membrane. During our studies of adipocyte function we noticed that current siRNA electroporation methods present numerous limitations. To silence genes more effectively we employed a lentivirus-mediated shRNA delivery system, and to standardize this technology in cultured adipocytes we targeted Myo1c and MAP4K4. Using this technology we were able to achieve clear advantages over siRNA oligonucleotide electroporation techniques in stability and permanence of gene silencing. Furthermore we showed that the use of lentiviral vectors in cultured adipocytes did not affect insulin signaling or insulin-mediated glucose uptake events. Despite our inability to use lentiviral vectors to achieve gene silencing in mice we were able to achieve adipose tissue-specific gene silencing effects in mice following manipulation of the lentiviral conditional silencing vector, and then crossing resulting founders with aP2-Cre mice. Interestingly however, only founders from the MAP4K4 conditional shRNA vector, but not founders from the Myo1c conditional shRNA vector, showed gene knockdown, possibly due to position-effect variegation. Taken together, findings from these studies are important because they present an alternative means of achieving gene silencing in cultured adipocytes, with numerous advantages not offered by siRNA oligonucleotide electroporation methods. Furthermore, the in vivo, adipose tissue-specific RNAi studies offer a quick, inexpensive, and less technically challenging means of achieving adipose tissue-specific gene ablations relative to traditional gene knockout approaches.
38

Mitochondrial Dysfunction and AKT Isoform-Specific Regulation in 3T3-L1 Adipocytes: A Dissertation

Shi, Xiarong 09 September 2010 (has links)
Excess food consumption and/or lack of exercise have dramatically contributed to the prevalence of overweight (BMI≥25) and obesity (BMI≥30) in modern society. The obesity epidemic has been linked to the rise in type 2 diabetes. In recent years, evidence has pointed to a close association between mitochondrial dysfunction in white adipose tissue (WAT) and insulin resistance, a key feature of type 2 diabetes. In order to dissect the cause and effect relationship between WAT mitochondrial dysfunction and insulin resistance, we established an in vitro cell line system to investigate this issue. We artificially introduced mitochondrial dysfunction in 3T3-L1 adipocytes by depleting the mitochondrial transcription factor A (Tfam) during adipogenesis, without changing the overall adipocyte differentiation program. We found that these Tfam-depleted 3T3-L1 adipocytes showed symptoms of insulin resistance, evidenced by impaired insulin stimulated GLUT4 translocation and glucose uptake. This result suggested that mitochondrial dysfunction could be a primary contributor to insulin resistance in fat tissue. However, the exact mechanism underlying this finding remains unclear. As part of a comprehensive understanding of insulin signaling in fat cells, we also investigated the involvement of the endosomal protein WDFY2 in the regulation of Akt isoform-specific effect on glucose uptake. In 3T3-L1 adipocytes, both Akt1 and Akt2 isoforms are expressed, but only Akt2 plays an indispensible role in insulin-stimulated GLUT4 translocation and glucose uptake. Previous studies implied that endosomal proteins may take a part in determining Akt substrate specificity. Here we found that WDFY2 preferentially co-localized with Akt2 and that knockdown of WDFY2 inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes, suggesting that endosomes are involved in this regulation. The effect of WDFY2 knockdown on insulin-stimulated glucose uptake worked through the down-regulation of Akt2, but not Akt1, protein level. We concluded that, endosomal protein WDFY2, by preferentially interacting with Akt2, regulates insulin signaling in glucose uptake in 3T3-L1 adipocytes. Our findings may help to develop specific therapeutic interventions for treatment of insulin resistance and type 2 diabetes.
39

Dynamics of Erythropoietic Survival Pathways In Vivo: A Dissertation

Koulnis, Miroslav 11 July 2011 (has links)
Erythropoiesis maintains stable tissue oxygenation in the basal state, while accelerating red cell production in anemia, blood loss or high altitude. The principal regulator of erythropoiesis is the hormone erythropoietin (Epo). In response to hypoxic stress, Epo can increase a 1000-fold, driving erythropoietic rate by up to 10-fold. It’s been suggested that survival pathways activated by the Epo receptor (EpoR) underlie its regulation of erythropoietic rate. A number of apparently redundant EpoR survival pathways were identified in vitro, raising the possibility of their functional specialization in vivo. Here I assessed the roles of three survival pathways activated by EpoR in erythroblasts in-vivo: the suppression of cell-surface Fas and FasL, the suppression of the pro-apoptotic regulator Bim, and the induction of the anti-apoptotic regulator Bcl-xL. I used the novel CD71/Ter119 flow-cytometric method of identifying erythroblast maturation stages in vivo to measure these apoptotic pathways in fetal liver and adult erythropoietic tissues. I found that these pathways differ markedly in their regulation of erythropoietic rate. Using mouse genetic models, I found that apoptosis mediated by interaction between erythroblasts that co-express cell-surface Fas and FasL plays a key autoregulatory role in stabilizing the size of the erythroblast pool in the basal state. Further, mice mutant for Fas or FasL showed a delayed erythropoietic response to hypoxia or high Epo. This suggests that Fas and FasL accelerate the stress response by providing an apoptotic ‘cell reserve’ that can be rescued by Epo in stress. I also examined the in-vivo behavior of two cell-intrinsic apoptotic regulators, Bcl-xL and Bim, previously unexamined in stress. The induction of Bcl-xL was rapid but transient, whilst the suppression of Bim was slower but persistent. My data suggest that Bcl-xL is a key mediator of EpoR’s anti-apoptotic signal very early in the stress response, before Bim and Fas are suppressed. Bcl-xL adaptation to high Epo occurs through inhibition of Stat5 activation, and resets it for the next acute stress. My findings suggest that in vivo, Epo regulates erythropoietic rate through erythroblast apoptosis, and that various apoptotic regulators play distinct and unique roles in this process. My work provides new molecular insights into erythropoiesis that are relevant to cytokine biology and to clinical approaches of disease treatment.
40

Role of the Yeast Ste20 Protein Kinase Ortholog Map4k4 in Adipose Tissue Function: A Dissertation

Guntur, Kalyani V. P. 10 February 2011 (has links)
Obesity has increased globally in epidemic proportions and as have the associated disorders. Insulin resistance that could further lead to type 2 diabetes is a major obesity associated dysfunction. Studies using insulin resistant mouse models and observations from human subjects exhibiting insulin resistance provide evidence for ectopic lipid deposition in organs like liver, muscle and heart as one of the major risk factors for developing insulin resistance. These observations suggest that deregulated adipose function to sequester and store excess energy as fat, could lead to insulin resistance. Furthermore, several studies have demonstrated adipose tissue dysfunction leading to inflammation and related syndromes. Interestingly, a mouse model with transgenic expression of glucose transporter in the adipose tissue exhibited improved glucose tolerance and increased insulin sensitivity despite development of obesity, upon high fat feeding. Thus mechanisms that improve adipose function could alleviate insulin resistance and associated diseases. Mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4) was identified in our laboratory as a negative regulator of adipocyte function. Interestingly, siRNA mediated knockdown of MAP4K4 promoted PPARγ protein expression. Additionally, silencing of MAP4K4 increased adipocyte triglyceride content. Because MAP4K4 is a negative regulator of PPARγ expression and adipocyte function, understanding the mechanism by which MAP4K4 regulates PPARγ expression is of interest. Thus, for the first part of this thesis, I characterized the signaling pathways utilized by MAP4K4 to regulate PPARγ expression in cultured adipocytes. Here I show that MAP4K4 regulates PPARγ expression through regulation of its protein translation. siRNA mediated MAP4K4 gene silencing stimulated PPARγ protein synthesis without changing its mRNA transcription or its protein degradation. This increase in PPARγ protein translation was due to an increase in the activity of mammalian target of rapamycin (mTOR). The increase in PPARγ protein expression mediated by mTOR activation was a specific effect of the 4E-BP1 phosphorylation that leads to its inactivation and was not a general increase in mTOR activity towards all of its substrates. Finally, adenovirus mediated over expression of MAP4K4 inhibited mTOR activation, and suppressed PPARγ protein translation. For the second part of this thesis, I assessed the role of MAP4K4 in adipocytes in vivo. To accomplish this, a lentivirus mediated shRNA construct was generated to attenuate MAP4K4 expression selectively in the mouse adipose tissue. First we demonstrate that the MAP4K4 shRNA construct is able to efficiently silence the expression of MAP4K4 in vitro when co-expressed with Cre recombinase. Furthermore, we show that following modification of the lentiviral conditional vector that was introduced into a mouse embryo at one cell stage, and crossing the resulting founders with aP2-Cre mice, adipose tissue specific MAP4K4 gene silencing was achieved. Moreover, shRNA mediated gene silencing is a faster and an inexpensive means of achieving tissue specific gene knockdown relative to the available traditional gene knockout approaches. Utilizing these adipose specific MAP4K4 gene knockdown mice, I reveal that MAP4K4 silencing enhanced fat mass as well as PPARγ expression significantly. This is accompanied by improved whole body insulin sensitivity. Furthermore, when challenged with high fat diet, adipose-specific MAP4K4 silenced mice exhibit enhanced adiposity with decreased lean mass. Moreover, adipocyte cell size and triglyceride content are significantly increased. Interestingly, despite increased adiposity, hepatic insulin sensitivity is significantly improved leading to decreased glucose output. Thus MAP4K4 is an important regulator of adipocyte function that mediates whole body glucose homeostasis, through a mechanism that is yet to be identified.

Page generated in 0.066 seconds