• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 22
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 168
  • 80
  • 46
  • 45
  • 39
  • 37
  • 36
  • 32
  • 24
  • 22
  • 22
  • 20
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Commande des mouvements et de l'équilibre d'un robot humanoïde à roues omnidirectionnelles / Control of movements and balance of a humanoid robot with omnidirectional wheels

Lafaye, Jory 02 July 2015 (has links)
La problématique traitée dans cette thèse concerne la commande et l'équilibre des robots humanoïdes disposant d'une base mobile à roues omnidirectionnelles. Les méthodes développées visent à atteindre de hautes performances dynamiques pour ce type de robot, tout en assurant stabilité et équilibre. Les robots humanoïdes ont en général un centre de masse relativement haut en comparaison avec leur surface de contact avec le sol. Ainsi, la moindre accélération des corps du robot induit une large variation de la répartition des forces de contact avec le sol. Si celles-ci ne sont pas correctement contrôlées, alors le robot peut tomber. De plus, le robot disposant d'une base mobile à roues, une perturbation peut l'amener aisément à basculer sur deux roues. Enfin, un intérêt particulier a été apporté à la réalisation d'une commande temps-réel implémentée sur le système embarqué du robot. Cela implique principalement des contraintes concernant le temps de calcul de la loi de commande. Afin de répondre à ces problèmes, deux modèles linéaires du robot ont été réalisés. Le premier permet de modéliser la dynamique du robot lorsque celui-ci possède toutes ses roues en contact avec le sol. Le second permet de modéliser la dynamique du robot lorsque celui-ci bascule sur deux de ses roues. Ces modèles ont été réalisés en prenant en compte la répartition massique du robot. Ainsi, il a été judicieux de le modéliser comme un système à deux masses ponctuelles, pouvant se déplacer sur un plan parallèle au sol. La première correspond au centre de masse de la base mobile, la seconde à celui du reste du robot. Ces modèles sont ensuite utilisés au sein de deux commandes prédictives, permettant de prendre en compte à chaque instant les contraintes dynamiques ainsi que le comportement du robot dans le futur. La première commande permet de contrôler les déplacements du robot lorsque celui-ci possède toutes ses roues en contact avec le sol, lui assurant de ne pas basculer. La seconde permet au robot de se rattraper d'une situation où une perturbation l'amène à basculer, afin de ramener toutes ses roues en contact avec le sol. Aussi, un superviseur disposant d'une machine à état à été réalisé afin de définir quelle loi de commande doit être exécutée à chaque instant. Ce superviseur utilise les capteurs disponibles sur le robot afin d'observer son état de basculement. Enfin, afin de valider expérimentalement le résultat des développements de cette thèse, une série d'expériences a été présentée, mettant en évidence les différents aspects de la loi de commande. Notamment, des essais ont été réalisés concernant le suivi de trajectoires non physiquement réalisables, le rejet de perturbations appliqués à la base mobile, la stabilisation du robot lors de son basculement, ainsi que la compensation de variations de l'inclinaison du sol. / The problem of this thesis concerns the control of the movements and the equilibrium of humanoid robots that have a mobile base with omnidirectionnal wheels. The developed methods aim to reach high dynamical performances for this type of robot, while ensuring it stability and equilibrium. Humanoid robots have generally a center of mass relatively high compared to its contact surface with the ground. Therefore, the slightest acceleration of the robot bodies induces a large variation of the distribution of the contact forces with the ground. If they are not properly controlled, the robot can fall. Moreover, the robot having a mobile base with wheels, a disturbance can easily bring it to tilt on two wheels. Finally, a specific interest have been provided about the realisation of a real time controler implemented on the embedded system of the robot. This implies some constraints about the computationnal time of the control law. In order to answer these problems, two linear models of the robot have been developed. The first allows to modelize the dynamics of the robot when it has all of its wheels in contact with the ground. The second allows to modelize the dynamics of the robot when it tilts on two of its wheels. These models have been developed by taking into account the mass distribution of the robot. These models have been subsequently used in two predictive control laws, allowing to take into account at every instant the dynamical constraints as weel as the future behavior of the robot. The first allows to control the movements of the robot when it has all of its wheels in contact with the ground, preventing it for tilting. The second allows the robot to recover itself in a situation when a disturbance bring it to tilt, in order to bring back all of its wheels in contact with the ground. Also, a supervisor that has a state machine has been made in order to define which control law has to be executed at each instant. This supervisor uses the available sensors on the robot in order to observe its tilt state. Finally, in order to validate experimentally the results of the developments of this thesis, a series of experiments has been presented, demonstrating some aspects of the control law. In particular, some tests have been made concerning the tracking of non physically feasible trajectories, the reject of disturbances applied on the mobile base, the stabilisation of the robot during its tilt, and the compensation of the variations of the ground inclination.
72

Balance preservation and task prioritization in whole body motion control of humanoid robots / Préservation de l'équilibre et priorisation des tâches dans la commande du mouvement corps entier de robots humanoïdes

Sherikov, Alexander 23 May 2016 (has links)
Un des plus grands défis dans la commande des robots est de combler l'écart entre la capacité de mouvement de l'humain et des robots humanoïdes. La difficulté réside dans la complexité des systèmes dynamiques représentant les robots humanoïdes: la non linéarité, le sous-actionnement, le comportement non-lisse en raison de collisions et de frottement, le nombre élevé de degrés de liberté. De plus, les robots humanoïdes sont censés opérer dans des environnements non-déterministes, qui exigent une commande temps réel avancée.L'approche qui prévaut actuellement pour faire face à ces difficultés est d'imposer diverses restrictions sur les mouvements et d'employer des modèles approximatifs des robots. Dans cette thèse, nous suivons la même ligne de recherche et proposons une nouvelle approche pour la conception de contrôleurs corps entier qui préservent l'équilibre. L'idée principale est de tirer parti des avantages des modèles approximatifs et de corps entier en les mélangeant dans un seul problème de contrôle prédictif avec des objectifs strictement hiérarchisés.La préservation de l'équilibre est l'une des principales préoccupations dans la commande des robots humanoïdes. Des recherches antérieures ont déjà établi que l'anticipation des mouvements est essentiel à cet effet. Nous préconisons que l'anticipation est utile dans ce sens comme un moyen de maintenir la capturabilité du mouvement, i.e., la capacité de s'arrêter. Nous soulignons que capturabilité des mouvements prévus peut être imposée avec des contraintes appropriées. Dans la pratique, il est fréquent d'anticiper les mouvements du robot à l'aide de modèles approximatifs afin de réduire l'effort de calcul, par conséquent, un contrôleur séparé de mouvement du corps entier est nécessaire pour le suivi. Au lieu de cela, nous proposons d'introduire l'anticipation avec un modèle approximatif directement dans le contrôleur corps entier. En conséquence, les mouvements du corps entier générés respectent les contraintes de capturabilité et les mouvements anticipes du modèle approximatif prennent en compte les contraintes et les tâches désirées pour le corps entier. Nous posons nos contrôleurs du mouvement du corps entier comme des problèmes d'optimisation avec des objectifs strictement hiérarchisés. Bien que cet ordre de priorité soit commun dans la littérature, nous croyons qu'il est souvent mal exploité.Par conséquent, nous proposons plusieurs exemples de contrôleurs, où la hiérarchisation est utile et nécessaire pour atteindre les comportements souhaités. Nous évaluons nos contrôleurs dans deux scénarios simulés, où la tâche du corps entier du robot influence la marche et le robot exploite éventuellement un contact avec la main pour maintenir son équilibre en étant debout. / One of the greatest challenges in robot control is closing the gap between themotion capabilities of humans and humanoid robots. The difficulty lies in thecomplexity of the dynamical systems representing the said robots: theirnonlinearity, underactuation, discrete behavior due to collisions and friction,high number of degrees of freedom. Moreover, humanoid robots are supposed tooperate in non-deterministic environments, which require advanced real timecontrol. The currently prevailing approach to coping with these difficulties isto impose various limitations on the motions and employ approximate models ofthe robots. In this thesis, we follow the same line of research and propose anew approach to the design of balance preserving whole body motion controllers.The key idea is to leverage the advantages of whole body and approximate modelsby mixing them within a single predictive control problem with strictlyprioritized objectives.Balance preservation is one of the primary concerns in the control of humanoidrobots. Previous research has already established that anticipation of motionsis crucial for this purpose. We advocate that anticipation is helpful in thissense as a way to maintain capturability of the motion, i.e., the ability tostop. We stress that capturability of anticipated motions can be enforced withappropriate constraints. In practice, it is common to anticipate motions usingapproximate models in order to reduce computational effort, hence, a separatewhole body motion controller is needed for tracking. Instead, we propose tointroduce anticipation with an approximate model into the whole body motioncontroller. As a result, the generated whole body motions respect thecapturability constraints and the anticipated motions of an approximate modeltake into account whole body constraints and tasks. We pose our whole bodymotion controllers as optimization problems with strictly prioritizedobjectives. Though such prioritization is common in the literature, we believethat it is often not properly exploited. We, therefore, propose severalexamples of controllers, where prioritization is useful and necessary toachieve desired behaviors. We evaluate our controllers in two simulatedscenarios, where a whole body task influences walking motions of the robot andthe robot optionally exploits a hand contact to maintain balance whilestanding.
73

Fusion d'informations multi-capteurs pour la commande du robot humanoïde NAO / Multi-sensor information fusion : application for the humanoid NAO robot

Nguyen, Thanh Long 05 April 2017 (has links)
Dans cette thèse nous montrons comment améliorer la perception d’un robot humanoïde NAO en utilisant la fusion multi-capteurs. Nous avons proposé deux scénarios: la détection de la couleur et la reconnaissance d’objets colorés. Dans ces deux situations, nous utilisons la caméra du robot et nous ajoutons des caméras externes pour augmenter la fiabilité de la détection car nous nous plaçons dans un contexte expérimental dans lequel l’environnement est non contrôlé. Pour la détection de la couleur, l’utilisateur demande au robot NAO de trouver un objet coloré. La couleur est décrite par des termes linguistiques tels que: rouge, jaune, .... Le principal problème à résoudre est la façon dont le robot reconnaît les couleurs. Pour ce faire, nous avons proposé un système Flou de Sugeno pour déterminer la couleur demandée. Pour simplifier, les cibles choisies sont des balles colorées. Nous avons appliqué la transformation de Hough pour extraire les valeurs moyennes des pixels des balles détectées. Ces valeurs sont utilisées comme entrées pour le système Flou. Les fonctions d'appartenance et les règles d'inférence du système sont construites sur la base de l'évaluation perceptive de l'humain. La sortie du système Flou est une valeur numérique indiquant le nom de la couleur. Une valeur de seuil est introduite pour définir la zone de décision pour chaque couleur. Si la sortie floue tombe dans cet intervalle, alors la couleur est considérée comme la vraie sortie du système. Nous sommes dans un environnement non contrôlé dans lequel il y a des incertitudes et des imprécisions (variation de la lumière, qualité des capteurs, similarité entre couleurs). Ces facteurs affectent la détection de la couleur par le robot. L’introduction du seuil qui encadre la couleur, conduit à un compromis entre l'incertitude et la fiabilité. Si cette valeur est faible, les décisions sont plus fiables, mais le nombre de cas incertains augmente, et vice et versa. Dans nos expérimentations, on a pris une valeur de seuil petite, de sorte que l'incertitude soit plus importante, et donc la prise de décision par un capteur unique, celui de NAO, soit faible. Nous proposons d'ajouter d’autres caméras 2D dans le système afin d’améliorer la prise de décision par le robot NAO. Cette prise de décision résulte de la fusion des sorties des caméras en utilisant la théorie des fonctions de croyance pour lever les ambiguïtés. La valeur de seuil est prise en compte lors de la construction des valeurs de masse à partir de la sortie Floue de Sugeno de chaque caméra. La règle de combinaison de Dempster-Shafer et le maximum de probabilité pignistique sont choisis dans la méthode. Selon nos expériences, le taux de détection du système de fusion est grandement amélioré par rapport au taux de détection de chaque caméra prise individuellement. Nous avons étendu cette méthode à la reconnaissance d’objets colorés en utilisant des caméras hétérogènes 2D et 3D. Pour chaque caméra, nous extrayons vecteurs de caractéristiques (descripteurs SURF et SHOT) des objets, riches en informations caractérisant les modèles d'objets. Sur la base de la correspondance avec des modèles formés et stockés dans la base d'apprentissage, chaque vecteur de caractéristiques de l'objet détecté vote pour une ou plusieurs classes appartenant à l'ensemble de puissance. Nous construisons une fonction de masse après une étape de normalisation. Dans cette expérimentation, la règle de combinaison de Dempster-Shafer et le maximum de probabilité pignistique sont utilisés pour prendre la décision finale. A la suite des trois expérimentations réalisées, le taux de reconnaissance du système de fusion est bien meilleur que le taux de décision issu de chaque caméra individuellement. Nous montrons ainsi que la fusion multi-capteurs permet d’améliorer la prise de décision du robot. / Being interested in the important role of robotics in human life, we do a research about the improvement in reliability of a humanoid robot NAO by using multi-sensor fusion. In this research, we propose two scenarios: the color detection and the object recognition. In these two cases, a camera of the robot is used in combination with external cameras to increase the reliability under non-ideal working conditions. For the color detection, the NAO robot is requested to find an object whose color is described in human terms such as: red, yellow, brown, etc. The main problem to be solved is how the robot recognizes the colors as well as the human perception does. To do that, we propose a Fuzzy Sugeno system to decide the color of a detected target. For simplicity, the chosen targets are colored balls, so that the Hough transformation is employed to extract the average pixel values of the detected ball, then these values are used as the inputs for the Fuzzy system. The membership functions and inference rules of the system are constructed based on perceptual evaluation of human. The output of the Fuzzy system is a numerical value indicating a color name. Additionally, a threshold value is introduced to define the zone of decision for each color. If the Fuzzy output falls into a color interval constructed by the threshold value, that color is considered to be the output of the system. This is considered to be a good solution in an ideal condition, but not in an environment with uncertainties and imprecisions such as light variation, or sensor quality, or even the similarity among colors. These factors really affect the detection of the robot. Moreover, the introduction of the threshold value also leads to a compromise between uncertainty and reliability. If this value is small, the decisions are more reliable, but the number of uncertain cases are increases, and vice versa. However, the threshold value is preferred to be small after an experimental validation, so the need for a solution of uncertainty becomes more important. To do that, we propose adding more 2D cameras into the detection system of the NAO robot. Each camera applies the same method as described above, but their decisions are fused by using the Dempster-Shafer theory in order to improve the detection rate. The threshold value is taken into account to construct mass values from the Sugeno Fuzzy output of each camera. The Dempster-Shafer's rule of combination and the maximum of pignistic probability are chosen in the method. According to our experimens, the detection rate of the fusion system is really better than the result of each individual camera. We extend this recognition process for colored object recognition. These objects are previously learned during the training phase. To challenge uncertainties and imprecisions, the chosen objects look similar in many points: geometrical form, surface, color, etc. In this scenario, the recognition system has two 2D cameras: one of NAO and one is an IP camera, then we add a 3D camera to take the advantages of depth information. For each camera, we extract feature points of the objects (SURF descriptor for 2D data, and the SHOT descriptor for 3D data). To combine the cameras in the recognition system, the Dempster-Shafer theory is again employed for the fusion. Based on the correspondence to trained models stored in the learning base, each feature point of the detected object votes for one or several classes i.e. a hypothesis in the power set. We construct a mass function after a normalization step. In this case, the Dempster-Shafer's rule of combination and the maximum of pignistic probability are employed to make the final decision. After doing three experiments, we conclude that the recognition rate of the fusion system is much better than the rate of each individual camera, from that we confirm the benefits of multi-sensor fusion for the robot's reliability.
74

Social Situatedness of Natural and Artificial Intelligence

Lindblom, Jessica January 2001 (has links)
The situated approach in cognitive science and artificial intelligence (AI) has argued since the mid-1980s that intelligent behaviour emerges as a result of a close coupling between agent and environment. Lately, many researchers have emphasized that in addition to the physical environment, the social environment must not be neglected. In this thesis we will focus on the nature of social situatedness, and the aim of this dissertation is to investigate its role and relevance for natural and artificial intelligence. This thesis brings together work from separate areas, presenting different perspectives on the role and mechanisms social situatedness. More specifically, we will analyse Vygotsky's cognitive development theory, studies of primate (and avian) intelligence, and last, but not least, work in contemporary socially situated AI. These, at a first glance, quite different fields have a lot in common since they particularly stress the importance of social embeddedness for the development of individual intelligence. Combining these separate perspectives, we analyse the remaining differences between natural and artificial social situatedness. Our conclusion is that contemporary socially artificial intelligence research, although heavily inspired by empirical findings in human infants, tends to lack the developmental dimension of situatedness. Further we discuss some implications for research in cognitive science and AI.
75

Impact Force Reduction Using Variable Stiffness with an Optimal Approach for Jumping Robots

Calderon Chavez, Juan Manuel 22 February 2017 (has links)
Running, jumping and walking are physical activities that are performed by humans in a simple and efficient way. However, these types of movements are difficult to perform by humanoid robots. Humans perform these activities without difficulty thanks to their ability to absorb the ground impact force. The absorption of the impact force is based on the human ability to vary muscles stiffness. The principal objective of this dissertation is to study vertical jumps in order to reduce the impact force in the landing phase of the jump motion of humanoid robots. Additionally, the impact force reduction is applied to an arm-oriented movement with the objective of preserving the integrity of falling humanoid robot. This dissertation focuses on researching vertical jump motions by designing, implementing and testing variable stiffness control strategies based on Computed-Torque Control while tracking desired trajectories calculated using the Zero Moment Point (ZMP) and the Center of Mass (CoM) conditions. Variable stiffness method is used to reduce the impact force during the landing phase. The variable stiffness approach was previously presented by Pratt et al. in [1], where they proposed that full stiffness is not always required. In this dissertation, the variable stiffness capability is implemented without the integration of any springs or dampers. All the actuators in the robot are DC Motors and the lower stiffness is achieved by the design and implementation of PID gain values in the PID controller for each motor. The current research proposes two different approaches to generate variable stiffness. The first approach is based on an optimal control theory where the linear quadratic regulator is used to calculate the gain values of the PID controller. The second approach is based on Fuzzy logic theory and it calculates the proportional gain (KP) of the PID controller. Both approaches are based on the idea of computing the PID gains to allow for the displacement of the DC motor positions with respect to the target positions during the landing phase. While a DC motor moves from the target position, the robot CoM changes towards a lower position reducing the impact force. The Fuzzy approach uses an estimation of the impact velocity and a specified desired soft landing level at the moment of impact in order to calculate the P gain of the PID controller. The optimal approach uses the mathematical model of the motor and the factor, which affects the Q matrix of the Linear Quadratic Regulator (LQR), in order to calculate the new PID values. A One-legged robot is used to perform the jump motion verification in this research. In addition, repeatability experiments were also successfully performed with both the optimal control and the Fuzzy logic methods. The results are evaluated and compared according to the impact force reduction and the robot balance during the landing phase. The impact force calculation is based on the displacement of the CoM during the landing phase. The impact force reduction is accomplished by both methods; however, the robot balance shows a considerable improvement with the optimal control approach in comparison to the Fuzzy logic method. In addition, the Optimal Variable Stiffness method was successfully implemented and tested in Falling Robots. The robot integrity is accomplished by applying the Optimal Variable Stiffness control method to reduce the impact force on the arm joints, shoulders and elbows.
76

Concise Modeling of Humanoid Dynamics / Kortfattad Modellering av Humanoiddynamik

Joachimbauer, Florian January 2017 (has links)
Simulation of mechanical systems like walking robots, is an essential part in developingnew and more applicable solutions in robotics. The increasing complexity of methodsand technologies is a key challenge for common languages. That problem creates a needfor flexible and scalable languages. The thesis concludes that an equation-based toolusing the Euler-Lagrange can simplify the process cycle of modeling and simulation. Itcan minimize the development effort, if the tool supports derivatives. Regretfully, it isnot common to use equation-based tools with this ability for simulation of humanoidrobots.The research in this thesis illustrates the comparison of equation-based tools to commonused tools. The implementation uses the Euler-Lagrange method to model andsimulate nonlinear mechanical systems. The focus of this work is the comparison ofdifferent tools, respectively the development of a humanoid robot in a stepwise mannerbased on the principle of passive walking. Additionally, each developed model has givenan informal argument to its stability. To prove the correctness of the thesis statementthe equation-based tool called Acumen is evaluated in contrast to a common used tool,MATLAB.Based on the achieved results, it can be concluded that the use of equation-based toolsusing Euler-Lagrange formalism is convenient and scalable for humanoid robots. Additionally,the development process is significantly simplified by the advantages of suchtools. Due to the experimental nature of Acumen further research could investigatethe possibilities for different mechanical systems as well as other techniques.
77

Analyse et interprétation des variations intentionnelles ou perturbatrices de la station debout sur gyropode / Analysis and interpretation of the deliberate or disruptive variations of the upright posture

Trénoras, Lambert 01 December 2014 (has links)
Le travail de cette thèse porte sur l’étude et la conception d’un fauteuil roulantsur deux roues appelé Gyrolift, adaptation d’un gyropode, véhicule de transport autoéquilibré,en fauteuil roulant verticalisateur sur deux roues. La verticalisation permetà une personne assise dans un fauteuil roulant le transfert d’une position assise à uneposition debout.Se mettre debout et se maintenir en équilibre malgré la présence d’un certainnombre de perturbations représente un défi pour une personne en situation de handicap.Les variations de posture de la partie supérieure telle que le tronc peuventêtre dues à des perturbations externes. Nous étudions la détection des mouvementsperturbateurs afin d’interpréter ces derniers ou l’intention qu’ils caractérisent et permettrede réagir en fonction de caractéristiques comme l’intensité et le sens. Nousétudions aussi les impacts de facteurs tels que l’environnement et l’appréhension surle Gyrolift et son utilisateur.Dans le premier chapitre de la thèse, la contribution porte sur l’étude de la trajectoirede verticalisation et sur les perturbations qu’elle peut générer. Un premierprototype a été conçu afin de valider notre étude.Afin de développer notre approche, le second chapitre de la thèse porte sur ladétection de perturbations sur un robot humanoïde bipède. Nous avons obtenu descritères nous permettant une détection rapide et fiable d’une perturbation, de sonsens et de son intensité afin d’effectuer les mouvements adaptés pour compenser cetteperturbation.Enfin, nous avons étudié l’adaptation de ces critères sur le Gyrolift ainsi que lesréactions possibles afin de sécuriser le système. Nous avons pour cela développé etréalisé un second prototype du fauteuil Gyrolift.Nous avons validé cette étude à l’aide d’un robot humanoïde et d’un nouveau typede fauteuil roulant verticalisateur, le Gyrolift, développé dans le cadre de ce projet. / The work of this thesis concerns the study and design of a two-wheel mobilitychair, conscript the Gyrolift, adapted from a Personal Transporter. It provides anauto-well-balanced transport vehicle and a verticalisation mechanism. The verticalisationallows a user in a wheelchair the transfer from a seat position to a standingposition.Being in a standing position and remaining stable when disturbances are presentmay be a challenge for a person with a mobility impairment. The posture variationsof the upper limbs such as the trunk can be due to external disturbances. This studydiscusses the detection of disruptive movements and to interpret the disturbances. Asafety ystem reacts according to the intensity of the disturbance when detected. Wealso study the impacts of factors such as the environment and the apprehension onthe Gyrolift and user.In the first chapter of the thesis, the contribution concerns the study of the trajectoryof verticalisation and the disturbances which it can generate. A first prototypewas designed to validate our study.The second chapter of the thesis concerns the detection of disturbance on bipedshumanoids robots. We obtained criteria allowing us a fast and reliable detection ofa disturbance, its direction and its intensity to make the movements adapted tocompensate for this disturbance.Finally, we studied the adaptation of these criteria on the Gyrolift as well as thepossible reactions to secure the system. We developed and realised for it a secondprototype of the Gyrolift wheelchair.We validated this study with the help of a humanoid robot and a new type ofverticalisation wheelchair developed within the framework of this project.
78

Senzorika a řízení pohybu pro humanoidního robota / Sensors and motion control for humanoid robot

Chlaň, Jakub January 2020 (has links)
The presented diploma thesis deals with the design and construction of a simple humanoid robot with two arms attached to a torso. The work was solved as a team project of two authors. Therefore, only the construction of the arm, which is inspired by the kinematics of the human arm is described in more detail. Its construction was the task of the author. An important part of the work is the selection of drives and sensors for the operation of the mechanism. Furthermore, the work presents the procedure of creating a kinematic model of the arms to solve the forward and inverse kinematics problem. For the possibility of motion control, the control of the control unit in Simulink was designed and the drive control was created.
79

ZERROR : Provoking ethical discussions of humanoid robots through speculative animation

Krzewska, Weronika January 2021 (has links)
Robotics engineers' ongoing quest to create human-like robots has raised profound questions on their lack of ethical implications. The rapid progress and growth of humanoid robots is said to have a significant impact on society and human psychology in the near future. Interaction Design is a multidisciplinary field in which designers are often encouraged to engage in important conversations and find solutions to complex problems. On the other hand, animators often use animated videos as metaphors to reflect on important matters that are present in our cultural and societal spheres. This study investigates the use of animation in Speculative Design settings as material to bridge two communities together - the animators and roboticists, to foster ethical behaviors and impact future technology. The main result of the design process is a concept for a mobile platform that stimulates discussions on the ethical considerations of human relationships with humanoid robots, through speculative animation. Moreover, the interactive platform enhances imagination, creativity and learning processes between users.
80

Řídicí jednotka pro humanoidní robot / Control Unit for Humanoid Robot

Florián, Tomáš January 2009 (has links)
The main goal of this project is to understand broadband sold Robonova-I humanoid robot and to design new improvements. The thesis is divided into five main chapters: The first of them (Robonova-I) is concerning the kit of Robonova-I, its completion and control possibilities. In details it deals with used servo motors, their operating and compares them. The next chapter is concerning the design of the control unit along with description of architecture of the processor and control possibilities with demonstrational board. In third there is a software solution of particular methods and commands which control the unit with demonstrational board. Chapter “The Design of Printed Circuit Board” describes facilities of the designed printed circuit board. The last chapter describes the final program for robot control through the use of computer and some of the algorithms by means of which the robot controls the microprocessor.

Page generated in 0.0369 seconds