• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 60
  • 8
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 193
  • 27
  • 25
  • 22
  • 22
  • 21
  • 21
  • 18
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The expression and regulation of hyaluronan synthases and their role in glycosaminoglycan synthesis

Brinck, Jonas January 2000 (has links)
The glycosaminoglycan hyaluronan is an essential component of the extracellular matrix in all higher organisms, affecting cellular processes such as migration, proliferation and differentiation. Hyaluronan is synthesized by a plasma membrane bound hyaluronan synthase (HAS) which exists in three genetic isoforms. This thesis focuses on the understanding of the hyaluronan biosynthesis by studies on the expression and regulation of the HAS proteins. In order to characterize the structural and functional properties of the HAS isoforms we developed a method to solubilize HAS protein(s) while retaining enzymatic activity. The partially purified HAS protein is, most likely, not asscociated covalently with other components. Cells transfected with cDNAs for HAS1, HAS2 and HAS3 were studied and all three HAS isozymes were able to synthesize high molecular weight hyaluronan chains in intact cells. The regulation of the hyaluronan chain length involves cell specific elements as well as external stimulatory factors. HAS3 transfected cells with high hyaluronan production exhibit reduced migration capacity and reduced amounts of a cell surface hyaluronan receptor molecule (CD44) compared to wild-type cells. The three HAS isoforms were studied and shown to be differentially expressed and regulated in response to external stimuli. Platelet derived growth factor (PDGF-BB) and transforming growth factor (TGF-β1) are important regulators of HAS at both the transcriptional and translational level. The HAS2 isoform is the isoform most susceptible to external regulation. The role of the UDP-glucose dehydrogenase in mammalian glycosaminoglycan biosynthesis was assessed. The enzyme is essential for hyaluronan, heparan sulfate and chondroitin sulfate biosynthesis, but does not exert a rate-limiting effect.
62

Effect of Hyaluronan-activation of CD44 on Cell Signaling and Tumorigenesis

Li, Lingli January 2006 (has links)
Hyaluronan (HA), a structural component in the extracellular matrix (ECM), has been recognized as a signaling molecule. It is important during various biological activities such as embryogenesis, angiogenesis, wound healing and tumor progression. Increased amount of hyaluronan during embryonic development is necessary for cell migration and differentiation, but the increased production of hyaluronan by tumor cells or tissue fibroblasts is correlated to poor prognosis for tumor progression and chronic inflammation, respectively. Therefore, understanding the mechanisms regulating HA-enriched matrices and the roles of HA in the biological functions is of fundamental biological importance. Four novel findings are described in this thesis: (1) HA fragments (HA12) and the known angiogenic factor FGF-2 promote endothelial cell differentiation by induction of common but also distinct sets of genes, particularly, upregulation of the chemokine CXCL1/GRO1 gene is necessary for HA12-induced angiogenesis and this effect is dependent on CD44 activation. (2) High concentrations of hyaluronan suppress PDGF-BB-induced fibroblasts migration and PDGFRβ tyrosine phosphorylation upon activation of hyaluronan receptor CD44, probably by recruiting a CD44-associated phosphatase to the PDGFRβ. (3) PDGF-BB stimulates HAS2 transcriptional activity and HA synthesis through upregulation of MAP kinase and PI3 kinase signaling pathways in human dermal fibroblasts. (4) Specific suppression of HAS2 gene in the invasive breast cancer cell line Hs578T by RNA interference (RNAi) leads to a less aggressive phenotype of breast tumor cells. This suppressive effect can be reversed by exogenously added hyaluronan. In conclusion, binding of hyaluronan to CD44 plays an important role in cell signaling, inflammation and tumor progression. Further studies are required to elucidate the molecular mechanisms through which hyaluronan levels are regulated under physiological or pathological conditions, and to explore compounds involved in hyaluronan accumulation and activity as targets for therapies of chronic inflammation and tumors.
63

Hyaluronan in normal and malignant bone marrow : a clinical and morphological study with emphasis on myelofibrosis

Sundström, Gunnel January 2005 (has links)
Fibrosis in the bone marrow is usually denominated myelofibrosis and may contribute to impaired hematopoiesis. Myelofibrosis is seen both in malignant and non-malignant diseases. The normal microenvironment in the bone marrow consists of a heterogenous population of hematopoietic and non-hematopoietic stromal cells, their extracellular products and hematopoietic cytokines. The stromal cells produce a complex array of molecules, among others collagens and glycosaminoglycans (GAGs) of which hyaluronan (HYA) is the most abundant. Marrow fibrosis results from an increased deposition of collagens, which are polypeptides. Staining for reticulin, mostly composed of collagen type III, is the common way of visualizing myelofibrosis. HYA, like the collagens, is widely distributed in connective tissues. Little is known about the distribution of HYA in bone marrow. The aims of this thesis have been to determine how HYA is distributed in normal and malignant bone marrow, compared to reticulin staining, and to follow patients with chronic myeloproliferative diseases (CMPD) during two years treatment with anagrelide considering development of cellularity and fibrosis. In bone marrow biopsies from healthy volunteers, the controls, HYA was found in a pattern that was concordant with the reticulin staining. Comparing patients with different malignant diseases with and without bone marrow involvemen, HYA staining was found to be significantly stronger in both groups compared to the controls. The HYA scores were also significantly higher in the bone marrow of patients with de novo acute myeloid leukemia (AML), compared to the controls. There was a correlation between HYA and reticulin in the patients with de novo AML, and in the patients with different malignant diseases with and without bone marrow involvement as in the controls. Increase of HYA, reticulin and cellularity in the bone marrow of patients with CMPD after two years of treatment with anagrelide indicated progression of fibrosis. Anagrelide is a valuable drug for reduction of platelets but seems unable to stop progression of fibrosis and hypercellularity. HYA is an interesting molecule with properties not only contributing to the structure of extracellular matrix but also to cell signaling and behaviour, although the understanding of the detailed mechanisms is still incomplete.
64

Impaired reparative processes in particular related to hyaluronan in various cutaneous disorders : a structural analysis

Bertheim, Ulf January 2004 (has links)
Cutaneous reparative processes, including wound healing, are highly developed procedures in which a chain of actions occurs to reconstitute the function of the wounded tissue. To prevent a delayed or excessive reparative process it is important to understand how this procedure develops and is maintained. One of the major extracellular matrix components of the skin is the glycosaminoglycan hyaluronan (HA). HA contributes to an extracellular environment, which is permissive for cell motility and proliferation, features that may account for HA’s unique properties observed in scarless foetal wound healing. The molecule is found at high concentration whenever proliferation, regeneration and repair of tissue occur. The aims of the present studies were to analyse the distribution of HA and to investigate its possible role in various cutaneous conditions associated with an impaired reparative process like in scar tissue formation in healing wounds, changed skin characteristics in diabetes mellitus and proliferating activity in basal cell carcinomas. Tissue biopsies were obtained from healthy human skin, type-I diabetic skin and various scar tissues. The samples were analysed in the light microscope with a hyaluronan-binding-probe, antibodies for collagen I, III, PCNA and Ki-67. Ultrastructural analyses were performed on the same tissue samples. In normal skin HA was present mainly in the papillary dermis. In epidermis HA was located in between the keratinocytes in the spinous layer. In the different scar tissues the localization of HA varied, with an HA distribution in mature scar type resembling that in normal skin. In keloids the papillary dermis lacked HA, but the thickened epidermis contained more HA than the other scar types. Ultrastructural studies of keloids revealed an altered collagen structure in the dermal layers, with an abundance of thin collagen fibers in the reticular dermis and thicker collagen fibers in the papillary dermis. Furthermore, the keloids displayed epidermal changes, which involved the basement membrane (BM), exhibiting fewer hemidesmosomes, and an altered shape of desmosomes in the entire enlarged spinous layer. These alterations in epidermis are suggested to influence the hydrodynamic and cell regulatory properties of the wounded skin. In diabetic patients, a reduced HA staining in the basement membrane zone was seen. The staining intensity of HA correlated to the physical properties of the skin reflected by their grades of limited joint mobility (LJM). Furthermore, the HA staining correlated with serum concentration of the HbA1c. In basal cell carcinomas (BCC), HA occurred predominantly in the tumour stroma. The distribution was most intense in the highly developed superficial BCC type, and resembled that of the papillary dermis of normal skin. In contrast, in the infiltrative BCC type, the tumour stroma stained weakly in the infiltrative part of the tumour. Moreover, the surrounding dermal layer was deranged and devoid of HA. The findings suggest that the tumour stroma in superficial BCC causes a slow, well-regulated cell growth in which the tumour cells do not substantially disturb the normal skin function. In the infiltrative BCC type, the tumour cells cause a disintegration of the tumour stroma as well as the normal surrounding dermis, which permits further spreading of the tumour. In fact, the behaviour of the infiltrative BCC tumour, growing beyond its boundaries, resembles that of the keloid. The mapping of the distribution of HA could be a useful tool for prognostic information, for evaluating the degree of progress and for deciding the choice of treatment in various diseases of the skin. In skin malignancies such as BCC it can be used to determine the radicality at the surgical excision of the tumour. Keywords: Hyaluronan, scar tissue, diabetes mellitus, basal cell carcinoma, skin, wound healing
65

Biomolecular Aspects of Flexor Tendon Healing

Berglund, Maria January 2010 (has links)
Flexor tendon injuries in zone II of the hand (i.e. between the distal volar crease and the distal interphalangeal joint) can be costly for both the afflicted individual and society because of the high cost of a long rehabilitation period, complicated by tendon ruptures or scarring with adhesion formation, causing impaired range of motion. The aim of the present thesis was to characterize more fully the deep flexor tendon, the tendon sheath and their response to injury in a rabbit model in order to find potential targets to improve the outcome of repair. The intrasynovial rabbit deep flexor tendon differed from the extrasynovial peroneus tendon in the expression of collagens and transforming growth factor-β1 gene expression. Differences were also found in collagen III and proteoglycans between regions of the flexor tendon subjected to either compressive or tensile load. After laceration and subsequent repair of the flexor tendon, a shift in collagen gene expression from type I to type III occurred. Proteoglycans were generally increased with the notable exception of decorin, a potential inhibitor of the profibrotic transforming growth factor-β1 which was markedly increased during the first two weeks after repair in tendon tissue but remained unaltered in the sheaths. Both vascular endothelial growth factor and basic fibroblast growth factor mRNA levels remained essentially unaltered, whereas insulin-like growth factor-1 increased later in the healing process, suggesting potential beneficial effects of exogenous addition, increasing tendon strength through stimulating tenocyte proliferation and collagen synthesis. Matrix metalloproteinase-13 mRNA levels increased and remained high in both tendon and sheath, whereas there was only a transient increase of matrix metalloproteinase-3 mRNA in tendon. We could also demonstrate a significant increase of the proportion of myofibroblasts, mast cells and neuropeptide containing nerve fibers in the healing tendon tissue, all components of the profibrotic myofibroblast-mast cell-neuropeptide pathway. / Biomolecular aspects of flexor tendon healing
66

Studies of Rejection in Experimental Xenotransplantation

Lorant, Tomas January 2002 (has links)
One main hurdle to xenotransplantation, i.e. transplantation between different species, is the immunological barrier that the organ meets in the recipient. The aim of this thesis was to characterise xenogeneic rejection mechanisms by using the concordant mouse-to-rat heart transplantation model. Graft-infiltrating immune cells could be isolated from both rejecting and non-rejecting grafts using ex vivo propagation, a technique based on incubation of graft biopsies in culture medium for 48 hours. The numbers of recovered T lymphocytes were considerably higher in grafts undergoing cell-mediated rejection than in grafts undergoing acute vascular rejection (AVR) or in non-rejecting transplants. Thus, ex vivo propagation should be a valuable tool for further studies of cell-mediated rejection. Cytokine patterns in the grafts, as measured by a quantitative real-time RT-PCR method, showed that AVR and cell-mediated rejection are associated with an increase of both pro-inflammatory cytokines (IL-1β and TNF-α) and more specific cytokines (IL-2, IL-10, IL-12p40 and IFN-γ). These data differed considerably from the patterns seen in the spleens of the recipients. Cell-mediated xenograft rejection was also found to be associated with a local accumulation of hyaluronan. Oral administration of xenogeneic cells stimulated a production of antibodies that could induce hyperacute rejection of cardiac xenografts when passively transferred to graft recipients. This is in contrast to several models for autoimmune diseases and allogeneic transplantation where oral administration of antigens is an effective way to induce unresponsiveness. Hence, future attempts to induce oral tolerance in xenotransplantation should be done with caution.
67

Bone Enhancement with BMP-2 for Safe Clinical Translation

Kisiel, Marta January 2013 (has links)
Bone morphogenetic protein-2 (BMP-2) is considered a promising adjuvant for the treatment of bone regeneration. However, BMP-2 delivery in a conventional collagen scaffold needs a high dose to achieve an effective outcome. Moreover, such dosage may lead to serious side effects. The aim of the following thesis was to find clinically acceptable strategies reducing the required dose of BMP-2 by improving the delivery and optimizing the preclinical testing of the new approaches. In all the studies hyaluronic acid (HA) hydrogels was used as a carrier for BMP-2. The HA hydrogel/BMP-2 construct was modified with bioactive matrix components in order to obtain an effective release of BMP-2 and an enhanced bone formation. The most promising were two strategies. In the first one, BMP-2, precomplexed with the glycosaminoglycans dermatan sulfate or heparin prior to loading it into HA hydrogel, protected and prolonged the delivery of the protein, resulting in twofold larger bone formation in comparison to non-complexed BMP-2. In the second strategy, the fibronectin fragment integrin-binding domain (FN) was covalently incorporated into HA hydrogel. The FN remarkably improved the capacity of the material to support the cells attachment and spreading, providing the formation of twice as much bone in comparison to non-functionalized HA hydrogel/BMP-2. Furthermore, the importance of a proper design of the preclinical study for BMP-2 delivery systems was highlighted. Firstly, proper physicochemical handling of BMP-2 showed the improvement in further in vivo activity.  The use of glass storage vials and an acidic formulation buffer was superior to plastic surfaces and physiological pH. Secondly, while regenerative medicine strategy testing required the use of animal models that matched the research questions related to clinical translation, two new animal models were developed. The subperiosteal mandibular and calvarial models in rats were found to be minimally invasive, convenient and rapid solution for the evaluation of a broad range of approaches including bone augmentation, replacement and regeneration. Both models are primarily relevant for the initial testing of the injectable bone engineering constructs.  Those clinically translatable approaches presented here could prove to be a powerful platform for a wider use of BMP-2 in orthopedic, plastic surgery and regenerative medicine research.
68

Evaluation of the Use of a Bioengineered Hydrogel Containing Hyaluronan to Reduce Inflammation and Scarring following Spinal Cord Injury Associated with Arachnoiditis

Austin, James W. 10 December 2012 (has links)
Background: Spinal cord injury (SCI) is heterogeneous in nature and can be complicated by inflammation and scarring in the subarachnoid space (arachnoiditis). The constellation of traumatic injury and arachnoiditis can lead to extensive intraparenchymal cysts or post-traumatic syringomyelia (PTS), due to alterations in fluid flow and pressure dynamics in the subarachnoid space. Hypothesis: Intrathecal injection of a bioengineered hydrogel containing hyaluronan (HA) will improve functional recovery following severe spinal cord injury associated with arachnoiditis. Methods: Acute to subacute pathophysiological events were characterized in non-injured sham rats, rats receiving a clip compression/contusion injury (SCI), rats receiving an intrathecal kaolin injection (Arachnoiditis) and in rats receiving SCI plus kaolin injection (PTS). Next, a HA containing hydrogel (HAMC) or artificial cerbralspinal fluid (aCSF) control was injected into the subarachnoid space 24 hours following PTS injury. To assess treatment efficacy, subacute pathophysiology was assessed as was long-term neurobehavioural and neuroanatomical recovery. Finally, in vitro studies examined the effect of HA on TLR4 activation using lipopolysaccharide in primary rat microglial cultures. Results: PTS animals exhibited a greater parenchymal injury response as compared to the sum of SCI alone or arachnoiditis alone. Injection of HAMC reduced the extent of scarring and inflammation in the subarachnoid space and improved neurobehavioural and neuroanatomical recovery relative to aCSF controls. These improvements were associated with reduced chondroitin sulfate proteoglycan and IL-1α expression and a trend towards and axonal preservation. In vitro studies demonstrated that HA is capable of reducing TLR4 mediated inflammation in microglia. Conclusions: Acute arachnoiditis potentiates the intensity of intraparenchymal inflammatory and scarring events following SCI. When HAMC was injected intrathecally following PTS injury, it mitigated some of the pernicious effects of arachnoiditis. Part of the therapeutic action of HAMC can be attributed to the ability of HA to reduce TLR4 mediated inflammation in microglia, possibly through an extracellular mechanism.
69

Relating the Bulk and Interface Structure of Hyaluronan to Physical Properties of Future Biomaterials

Berts, Ida January 2013 (has links)
This dissertation describes a structural investigation of hyaluronan (HA) with neutron scattering techniques. HA is a natural biopolymer and one of the major components of the extracellular matrix, synovial fluid, and vitreous humor.  It is used in several biomedical applications like tissue engineering, drug delivery, and treatment of osteoarthritis. Although HA is extensively studied, very little is known about its three-dimensional conformation and how it interacts with ions and other molecules. The study aims to understand the bulk structure of a cross-linked HA hydrogel, as well as the conformational arrangement of HA at solid-liquid interfaces. In addition, the structural changes of HA are investigated by simulation of physiological environments, such as changes in ions, interactions with nanoparticles, and proteins etc. Small-angle neutron scattering and neutron reflectivity are the two main techniques applied to investigate the nanostructure of hyaluronan in its original, hydrated state. The present study on hydrogels shows that they possess inhomogeneous structures best described with two correlation lengths, one of the order of a few nanometers and the other in the order of few hundred nanometers. These gels are made up of dense polymer-rich clusters linked to each other. The polymer concentration and mixing governs the connectivity between these clusters, which in turn determines the viscoelastic properties of the gels. Surface-tethered HA at a solid-liquid interface is best described with a smooth varying density profile. The shape of this profile depends on the immobilization chemistry, the deposition protocol, and the ionic interactions. HA could be suitably modified to enhance adherence to metal surfaces, as well as incorporation of proteins like growth factors with tunable release properties. This could be exploited for surface coating of implants with bioactive molecules. The knowledge gained from this work would significantly help to develop future biomaterials and surface coatings of implants and biomedical devices.
70

Biocompatibility And Biomechanical Properties Of New Polycaprolactone-bioglass Based Bone Implant Materials

Erdemli, Ozge 01 September 2007 (has links) (PDF)
Researches on bone defects are focused on the use of composites due to the composite and well-organized hierarchical structure of the bone. In this study, it is aimed to develop Polycaprolactone based implants with different organic &amp / #8211 / DBM, HYA- and/or inorganic &amp / #8211 / bioglass, calcium sulfate- compositions for augmenting bone healing. Bioactivity of the discs was evaluated by scanning electron microscopy and EDS analysis after incubation in SBF for 1, 7 and 14 days. All bioglass containing groups showed apatite molecules at different incubation times. Degradation studies demonstrated that only PCL/BG/HYA discs had fast degradation upon incubations in PBS (4 and 6 weeks). Initial mechanical properties of composites were found to be directly related to the composition. However, decreases in disc mechanical properties were also obtained in the same order with the amount of water uptake at composite groups. According to biocompatibility studies investigated with cytotoxicity tests on Saos-2 cells, all groups, except the HYA involving one were found as biocompatible. After in vivo application of discs to critical size defects on rabbit humeri (for 7 weeks), their efficacy on healing was studied with computerized tomography, SEM and biomechanical tests. The results revealed that bone-implant interface formation has started for all groups with high bone densities at the interface of implant groups compared to empty defect sites of negative controls. Also the healing was suggested to be gradual from bone to implant site as microhardness values increased at regions closer to bone. However, regeneration was found to not reach to healthy bone levels.

Page generated in 0.0452 seconds