• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Μελέτη, χαρακτηρισμός και ιδιότητες νέων υλικών υψηλής τεχνολογίας / Growth, characterization and properties of new high tech materials

Γραμματικόπουλος, Σπυρίδων 11 March 2014 (has links)
Το αντικείμενο της παρούσας Διδακτορικής Διατριβής είναι η ανάπτυξη νέων υλικών για σύγχρονες τεχνολογικές εφαρμογές. Για αυτό τον λόγο, επιλέχτηκε κατ’ αρχήν να αναπτυχθεί μια καινούρια και ταυτόχρονα πρωτότυπη διαδικασία παρασκευής νανοσωματιδίων. Για το σκοπό αυτό σχεδιάστηκε και ανακατασκευάστηκε εξ’ αρχής μια υπάρχουσα συσκευή sputtering, εφαρμόζοντας νέες τεχνικές και διατάξεις για την εναπόθεση των λεπτών και υπέρλεπτων υμενίων χρυσού σε διαφορετικές θερμοκρασίες υποστρώματος. Παρασκευάστηκαν δείγματα σε κρυογενικές θερμοκρασίες εναπόθεσης (-195 oC) έως και σε υψηλές Θερμοκρασίες των 450 oC. Παράλληλα πραγματοποιήθηκε και σύγκριση με μια σειρά δειγμάτων λεπτών υμενίου χρυσού με θερμική ανόπτηση μετά την εναπόθεση έως τους 800 oC. Αφού μελετήθηκε ο τρόπος ανάπτυξης των υμενίων του χρυσού με αυτές τις τεχνικές, και χαρακτηρίστηκαν τα λεπτά υμένια με διαφόρους τρόπους, επιλέχθηκε η πιο αποδοτική από μορφολογικής άποψης μέθοδος, για την παρασκευή νανοσωματιδίων χρυσού. Έτσι παρασκευάστηκαν υπέρλεπτα υμένια χρυσού, κάτω από συγκεκριμένες συνθήκες. Αυτά τα δείγματα έδωσαν νανοσωματίδια χρυσού της τάξεως των μερικών νανομέτρων, ικανά να δώσουν βάση των φασμάτων απορρόφησης, επιφανειακούς πλασμονικούς συντονισμούς σε διάφορα μήκη κύματος από τα 2 - 2,5 eV ανάλογα με το μέγεθος των νανοσωματιδίων που καθορίζουμε από τις συνθήκες του πειράματος. Στην συνέχεια παρασκευάστηκαν αντίστοιχα δείγματα από ένα νέο σύγχρονο υλικό, που αποτελείται από χρυσό, γερμάνιο και άργυρο. Χρησιμοποιώντας την ίδια διάταξη παρασκευάστηκαν αντίστοιχα υπέρλεπτα υμένια, στα οποία ανιχνεύτηκαν υβριδικά νανοσωματίδια χρυσού – αργύρου σε αναλογίες 1:1, προστατευμένα από μια άμορφη υαλώδη μήτρα οξειδίου του γερμανίου. Τέλος, κατά τον οπτικό χαρακτηρισμό των δειγμάτων αυτών και διαπιστώθηκε από τα φάσματα απορρόφησης συνδυασμένος επιφανειακός πλασμονικός συντονισμός. Τέλος, τα μεταλλικά και τα ημιαγώγιμα υπέρλεπτα υμένια έχουν τεράστια σημασία σε διάφορους τομείς της επιστήμης των υλικών και της νανοτεχνολογίας. Έτσι, η πρωτότυπη πειραματική διάταξη που αναπτύχτηκε είναι ενδιαφέρουσα για την παρασκευή μιας πληθώρας νάνο-ηλεκτρομηχανικών και οπτοηλεκτρονικών συστημάτων βασισμένα σε διάφορα σύγχρονα υλικά. / The objective of this Thesis is to develop new high – Tech materials for modern technological applications. For this reason, we have chosen in principle to develop a new prototype manufacturing process for growth of nanoparticles. For this purpose we designed and rebuilt from the beginning an existing D.C. sputtering apparatus to apply new techniques and devices for the deposition of thin and ultrathin films of gold at various substrate temperatures. We prepared samples at cryogenic temperatures deposition (-195 oC) up to a high temperature of 450 oC. The results were compared with a series of samples of thin gold films post annealed up to 800 oC. After studying the growth modes of thin gold films with these techniques, and characterize thin films in different ways, we chose the most efficient method from morphological point of view, for the optimum preparation of gold nanoparticles. So we proceeded to the deposition of ultrathin gold films, under certain conditions. These samples gave us gold nanoparticles in the range of a few nanometers, able to give us surface plasmon resonances at different wavelengths from 2 - 2,5 eV depending on the size of nanoparticles. Then samples were prepared respectively from a modern new target material consisting of gold, germanium and silver. Using the same configuration we were able to prepare ultrathin films. These films were found to consist of Au-Ag nanoparticles self-organized in an amorphous GeOx matrix. Finally, we proceeded to the optical characterization of these samples and found on the absorption spectra combined surface plasmon resonances. Finally, the metal and the semiconductor ultrathin films are crucial in various fields of materials science and nanotechnology. Thus, the original experimental setup which was developed is useful in order to prepare a multitude of nano - electromechanical and optoelectronic systems based on various modern materials.
12

Structure and Dynamics of Binary Mixtures of Soft Nanocolloids and Polymers

Chandran, Sivasurender January 2013 (has links) (PDF)
Binary mixtures of polymers and soft nanocolloids, also called as polymer nanocomposites are well known and studied for their enormous potentials on various technological fronts. In this thesis blends of polystyrene grafted gold nanoparticles (PGNPs) and polystyrene (PS) are studied experimentally, both in bulk and in thin films. This thesis comprises three parts; 1) evolution of microscopic dynamics in the bulk(chapter-3),2) dispersion behavior of PGNPs in thin and ultra thin polymer matrices (chapter-4) 3) effect of dispersion on the glass transition behavior (chapter-5). In first part, the state of art technique, x-ray photon correlation spectroscopy is used to study the temperature and wave vector dependent microscopic dy¬namics of PGNPs and PGNP-PS mixtures. Structural similarities between PGNPs and star polymers (SPs) are shown using small angle x-ray scatter¬ing and scaling relations. We find unexpected (when compared with SPs) non-monotonic dependence of the structural relaxation time of the nanoparticles with functionality (number of arms attached to the surface). Role of core-core attractions in PGNPs is shown and discussed to be the cause of anomalous behavior in dynamics. In PGNP-PS mixtures, we find evidence of melting of the dynamically arrested state of the PGNPs with addition of PS followed by a reentrant slowing down of the dynamics with further increase in polymer frac¬tion, depending on the size ratio(δ)of PS and PGNPs. For higher δ the reen¬trant behavior is not observed with polymer densities explored here. Possible explanation of the observed dynamics in terms of the presence of double-glass phase is provided. The correlation between structure and reentrant vitrifica¬tion in both pristine PGNPs and blends are derived rather qualitatively. In the second part, the focus is shifted to miscibility between PGNPs and polymers under confinement i.e., in thin films. This chapter provide a compre¬hensive study on the different parameters affecting dispersion viz., annealing conditions, fraction of the added particles, polymer-particle interface and more importantly the thickness of the films. Changes in the dispersion behavior with annealing is shown and the need for annealing the films at temperatures higher than the glass transition temperature of the matrix polymers is clearly elucidated. Irrespective of the thickness of the films( 20 and 65 nm) studied, immiscible particle-polymer blends unequivocally prove the presence of gradi¬ent in dynamics along the depth of the films. To our knowledge for the first time, we report results on confinement induced enhancement in the dispersion of the nanoparticles in thin polymer films. The enhanced dispersion is argued to be facilitated by the increased free volume in the polymer due to confinement as shown by others. Based on these results we have proposed a phase diagram for dispersibility of the nanoparticles in polymer films. The phase diagram for ultra thin films highlights an important point: In ultra thin films the particles are dispersed even with grafting molecular weight less than matrix molecular weight. In the third part, we have studied the glass transition of the thin films whose structure has been studied earlier in the earlier part. Non-monotonic variation in glass transition with the fraction of particles in thin films has increased our belief on the gradient in the dynamics of thin polymer films. En¬hanced dispersion with confinement is captured with the enhanced deviation in glass transition temperature of ultra thin films. Effect of miscibility param¬eter on Tgis studied and the results are explained with the subtle interplay of polymer-particle interface and confinement.
13

Synthesis and Transformation of AuCu Intermetallic Nanoparticles

Sinha, Shyam Kanta January 2013 (has links) (PDF)
Investigations on size dependent phase stability and transformations in isolated nanoparticles have gained momentum in recent times. Size dependent phase stability generates size specific particle microstructure which consequently yields size specific functionality. One important prerequisite for conducting studies on nanoparticles is their synthesis. A substantial amount of research effort has therefore been focused on devising methodologies for synthesizing nanoparticles with controlled shapes and sizes. The present thesis deals with both these two aspects: (a) synthesis of nanoparticles and (b) phase transformations in nanoparticles. The system chosen in this study is AuCu intermetallic nanoparticles. The choice of AuCu nanoparticle was due to the fact that the literature contains abundance of structural and thermodynamic data on Au–Cu system which makes it a model system for investigating size dependence of phase transformations. With respect to synthesis, the present thesis provides methodologies for synthesizing alloyed Au–Cu nanoparticles of different sizes, Au–Cu nano-chain network structures and uniform Au–Cu2S hybrid nanoparticles. For every type, results are obtained from a detailed investigation of their formation mechanisms which are also presented in the thesis. With respect to phase transformation, the thesis presents results on the size dependence of fcc to L10 transformation onset in Au–Cu nanoparticles under isothermal annealing conditions. The present thesis is divided into eight chapters. A summary of results and key conclusions of work presented in each chapter are as follows. The ‘introduction’ chapter (chapter I) describes the organization of the thesis. Chapter II (literature study) presents a review of the research work reported in the literature on the various methodologies used for synthesizing Au–Cu based nanoparticles of different shapes and sizes and on ordering transformation in AuCu nanoparticles. The chapter also presents a brief discussion on the reaction variables that control the process of nucleation and growth of the nanoparticles in solution. Chapter III titled ‘experimental details and instrumentation’ describes the synthesis procedures that were used for producing various nanoparticles in the present work. The chapter also briefly describes the various characterization techniques that were used to investigate the nanoparticles. The fourth chapter titled ‘synthesis and mechanistic study of different sizes of AuCu nanoparticles’ provides two different methodologies for synthesis, referred as ‘two-stage process’ and ‘two-step process’ that have been used for producing alloyed AuCu nanoparticles of different sizes (5, 7, 10, 14, 17, 25 nm). The ‘two-stage’ process involved sequential reduction of Au and Cu precursors in a one pot synthesis process. Whereas, the ‘two-step’ process involved a two-pot synthesis in which separately synthesized Au nanoparticles were coated with Cu to generate alloyed AuCu nanoparticles. In the two-stage synthesis process it was observed that by changing the total surfactant-to-metal precursor molar ratio, sizes of the alloyed AuCu nanoparticles can be varied. ‘Total surfactants’ here include equal molar amounts of oleic acid and oleylamine surfactants. Interestingly, it was observed that there exists a limitation with respect to the minimum nanoparticle size that can be achieved by using the two-stage process. The minimum AuCu nanoparticle size achieved using the two-stage synthesis process was 14 nm. Mechanism of formation of AuCu nanoparticles in the two-stage synthesis process was investigated to find out the reason for this size limitation and also to determine how the synthesis process can be engineered to synthesize alloyed AuCu nanoparticles with smaller (<14nm) sizes. Studies to evaluate mechanism of synthesis were conducted by investigating phase and size of nanoparticles present in the reaction mixture extracted at various stages of the synthesis process. Their studies revealed that (a) the nanoparticle formation mechanism in the two-stage synthesis process involves initial formation of Au nanoparticles followed by a heterogeneous nucleation and diffusion of Cu atoms into these Au rich seeds to form Au–Cu intermetallic nanoparticles and (b) by increasing the relative molar amount of the oleylamine surfactant, size of the initial Au seed nanoparticles can be further reduced from the minimum size that can be achieved in the case when equal molar amounts of oleylamine and oleic acid surfactants are used. The information obtained from the mechanistic study was then utilized to design the two-step synthesis process. In the two-step process, Au nanoparticles were synthesized in a reaction mixture containing only the oleylamine surfactant. Use of only oleylamine resulted in production of pure Au nanoparticles with sizes that were well below 10 nm. These Au nanoparticles were washed and dispersed in a solution containing Cu precursor. Introduction of a reducing agent into this reaction mixture led to the heterogeneous nucleation of Cu onto the Au seed particles and their subsequent diffusion into them to form alloyed AuCu nanoparticles with sizes of ~5, 7 and 10 nm. The study present in this chapter essentially signified that the surfactants used in the reaction mixture not only prevent nanoparticles from agglomerating in the final dispersion but also control their nucleation and growth and therefore can be used as a tool to tune nanoparticle sizes. The fifth chapter titled ‘size dependent onset of FCC-to-L10 transformations in AuCu alloy nanoparticles’ illustrates the effect of AuCu nanoparticle size on the onset of ordering under isothermal annealing conditions. Nanoparticles in this study were annealed in-situ in a transmission electron microscope. Samples were prepared by drop drying a highly dilute dispersion of as-synthesized nanoparticles onto an electron transparent TEM grid. Nanoparticles sitting on the TEM grid were well separated from each other to minimize particle sintering during the annealing operation. It was however observed that during the isothermal annealing, particle coarsening due to atomic diffusion was appreciable for 5 nm particles but negligible for 7 and 10 nm particles. Therefore for this study only 7 nm and 10 nm sized particles were considered. Onset of ordering was determined from the time when first sign of the diffraction spot, corresponding to the ordered phase, appears in the selected area electron diffraction pattern from a region containing large number of AuCu nanoparticles. Through a series of isothermal experiments it was observed that the time for onset of ordering increased with decrease in size of the nanoparticles. It is speculated that the delay in onset of ordering may be due to the fact that with a decrease in nanoparticle size the probability of a nanoparticle containing a fluctuation that shall generate a thermodynamically stable nuclei of the ordered phase decreases. A sharp interface between the ordered and the disordered phase inside the particle was also observed which suggested that the ordering transformation in as-synthesized fcc AuCu nanoparticles is a first order transformation. The sixth chapter titled ‘synthesis and characterization of Au1-xCux–Cu2S hybrid nanostructures: morphology control by reaction engineering’ provides a modified polyol method based synthesis strategy for producing uniform Au–Cu2S hybrid nanoparticles. Detailed compositional and structural characterization revealed that the hybrid nanoparticles are composed of cube shaped Au-rich, Au–Cu solid solution phase and hemispherical shaped Cu2S phase. Interestingly, the hemispherical Cu2S phase was attached to only one facet of the cube shaped phase. A study on the formation mechanism of hybrid nanoparticles was also conducted by characterizing specimens extracted from the reaction mixture at different stages of the synthesis process. The study revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu–thiolate complex with a sheet morphology. With increase in time at 180°C, the Cu–thiolate complex decomposed and one part of the Cu atoms that were produced from the decomposition were utilized in forming the spherical Cu2S and other part diffused into the Au nanoparticles to form Au–Cu solid solution phase. The chapter also presents a study on the effect of dodecanethiol (DDT) on achieving the hemisphere-on-cube hybrid morphology. In this study it is illustrated that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle. The seventh chapter titled ‘synthesis of Au–Cu nano-chains network and effect of temperature on morphological evolution’ provides methodology for synthesizing fcc Au– Cu nano-chain network structures using polyvinylprrolidone (PVP) surfactant. It was observed that with increase in the molar amount of PVP in the reaction mixture, morphology of the as-synthesized product gradually changed from isolated nanoparticles to branched nano-chain like. The nano-chains contained twins which indicated an absence of continuous growth and possibility of growth by oriented attachment of initially formed Au–Cu nanoparticles. Both in-situ and ex-situ annealing of the nano-chains led to their decomposition into isolated nanoparticles of varying sizes. Annealing also caused fcc-to¬L10 phase transformation. Investigation of the wave length of perturbation leading to breaking of a nano-chain into particles indicated that the surface energy anisotropy affects the splitting of nano-chain network structure into nano-sized particles. The thesis ends with a last chapter where we have presented possible future extension of current work.

Page generated in 0.0693 seconds