• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2665
  • 917
  • 537
  • 301
  • 211
  • 189
  • 141
  • 63
  • 58
  • 48
  • 28
  • 26
  • 17
  • 17
  • 15
  • Tagged with
  • 6158
  • 789
  • 631
  • 551
  • 534
  • 527
  • 496
  • 478
  • 412
  • 365
  • 354
  • 341
  • 332
  • 318
  • 283
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Stochastic Hybrid Systems Modeling and Estimation with Applications to Air Traffic Control

Jooyoung Lee (5929934) 14 August 2019 (has links)
<p>Various engineering systems have become rapidly automated and intelligent as sensing, communication, and computing technologies have been increasingly advanced. The dynamical behaviors of such systems have also become complicated as they need to meet requirements on performance and safety in various operating conditions. Due to the heterogeneity in its behaviors for different operating modes, it is not appropriate to use a single dynamical model to describe its dynamics, which motivates the development of the stochastic hybrid system (SHS). The SHS is defined as a dynamical system which contains interacting time-evolving continuous state and event-driven discrete state (also called a mode) with uncertainties. Due to its flexibility and effectiveness, the SHS has been widely used for modeling complex engineering systems in many applications such as air traffic control, sensor networks, biological systems, and etc.</p><p>One of the key research areas related to the SHS is the inference or estimation of the states of the SHS, which is also known as the hybrid state estimation. This task is very challenging because both the continuous and discrete states need to be inferred from noisy measurements generated from mixed time-evolving and event-driven behavior of the SHS. This becomes even more difficult when the dynamical behavior or measurement contains nonlinearity, which is the case in many engineering systems that can be modeled as the SHS.</p><p>This research aims to 1) propose a stochastic nonlinear hybrid system model and develop novel nonlinear hybrid state estimation algorithms that can deal with the aforementioned challenges, and 2) apply them to safety-critical applications in air traffic control systems such as aircraft tracking and estimated time of arrival prediction, and unmanned aircraft system traffic management.</p>
262

Adoption of sustainable technology: hybrid electric vehicles (HEVs)

Preston, Kelli-Paige January 2016 (has links)
A research report submitted to the Faculty of Humanities University of the Witwatersrand In partial fulfilment of the requirements for the degree of Masters of Arts in Organisational Psychology 2016 / Recent environmental awareness has led to an expanding interest surrounding environmental consciousness and a greater social shift world over towards energy efficiency and the sustainability of technologies and resources. Consequently, there has been the development of sustainable technologies within the automobile industry including that of hybrid electric vehicles (HEVs). With the development of these technologies, it becomes necessary to investigate the factors that underpin the use and adoption of them within our society, so as to ensure their greater diffusion, use and adoption. In this light, this study aimed to investigate the factors that function in predicting the Intention to Adopt the sustainable technology of HEVs. This has been investigated in accordance with the constructs of the Unified Theory of Acceptance and Use of Technology (UTAUT) model. This model comprises the constructs of: Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions. This study also intended to examine these constructs and determine whether they are moderated by the constructs of Pro-Environmental Behaviour and Dispositional Resistance to Change in predicting the Intention to Adopt HEVs. The sample for this study was comprised of 133 final year Law students from the University of the Witwatersrand. The adapted UTAUT Scale, the adapted Dispositional Resistance to Change Scale and the Pro-Environmental Scale were utilised as the measures within this study. Several subscales of the UTAUT Scale as well as the Pro-Environmental Behaviour (PEB) Scale had low Internal Consistency Reliabilities within both the Pilot and Main study. However, the researcher chose to run the analyses taking this into consideration. Several subscales of the UTAUT Scale as well as the Dispositional Resistance to Change (DRC) Scale had acceptable levels of Internal Consistency Reliabilities for use in conducting analyses. Multiple regression equations and moderated multiple regression equations were run in order to investigate the effects of these constructs in predicting the Intention to Adopt HEVs. The results drawn from this study illustrated that there was a positive, significant effect of two questions concerning lifestyle factors and a reduced taxed levy of the construct Facilitating Conditions on Intention to Adopt HEVs. The results also showed that the constructs of PEB and DRC had no direct moderating influence on Intention to Adopt HEVs. / MT2017
263

Model predictive power control for hybrid electric vehicles. / CUHK electronic theses & dissertations collection

January 2008 (has links)
Although there are different HEV configurations, they are all based on same kinds of components. After introducing the main components HEVs use, we build up a model which can illustrate the basic idea of HEVs. The analysis of the model helps us to reveal the essential problem of HEV power control. The performance of a HEV depends not only on the individual components but also on how the components are coordinated. The power control system must determine operating points for the components during driving to save energy. The proposed power control approach is based on model predictive control and trying to solve the nature problem of HEV power control by an optimization concept, which makes the approach applicable for all kinds of HEVs. A number of different simulations have been executed to prove the feasibility of the approach. By changing some operational weights, the power control system can achieve different performances. / Another key concept adopted in the power control system is based on the premise that future driving load would affect fuel consumption, as well as the operating modes of the vehicle and the driver behavior do. The proposed power control approach incorporates a driving load forecasting algorithm whose role is to assess the driving environment, the driving style of the driver, and the trend of the vehicle using long and short term statistical features of the past drive cycle. This future driving load information is subsequently used to change the operational weights of the power control approach, such as engine efficiency, battery State of Charge (SOC), engine speed, etc. By this way, the power control approach leads to improved the vehicle's overall performance. / One of the major crises that the world is facing today is the problems of energy. With the beneficial effect on the environment and high energy transformation efficiency in hybrid electric vehicle technology, automobile manufacturers have begun to look more seriously into vehicles with alternative power sources. Aimed at solving the more and more serious problems of energy, HEV has been one of the best practical applications for transportation with high fuel economy. / This dissertation proposes a new power control approach for all kinds of hybrid electric vehicles (HEVs). / To obtain better performance, we use particle swarm optimization (PSO) to find optimal weights for different drive loads. Then, by integrating MPC controller and load forecasting algorithm, a realtime HEV power control system, model predictive power control with load forecasting system (MPC-LF), is developed. Experimental results prove the feasibility of the control system. / Wang, Zhancheng. / Adviser: Xu Yangsheng. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3631. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 132-140). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
264

Effect of unsaturated fatty acids on opioid binding characteristics of neuroblastoma X gliona hybrid cells NG 108-15.

January 1984 (has links)
David Chi-cheong Wan. / Bibliography: leaves 75-85 / Thesis (M.Ph.)--Chinese University of Hong Kong, 1984
265

Russia's Hybrid Warfare: The Prowess and Limitations of Putin's (In)Visible Hand in Estonia and Latvia

Casselman, Rachel 06 September 2017 (has links)
Russia’s recent increase in acts of aggression against bordering nations is concerning. After Russia’s annexation of Ukraine’s Crimean peninsula, many wondered if the world should anticipate a Baltic intervention. This paper seeks to analyze this question through a comparative study of Russia’s recent interventions in Georgia and Ukraine, an analysis of the Estonian and Latvian Russian-speaking population, and an analysis of the NATO alliance’s strengths and weaknesses in deterring a possible Russian threat. From my analysis, I conclude that a conventional Baltic intervention is unlikely. However, I also conclude that the NATO alliance is not prepared to counter non-conventional acts of aggression and that these tactics could become more common in international conflicts. Therefore, I also conclude that a non-conventional Baltic intervention from Russia is possible and, consequently, the alliance should re-examine its framework.
266

Modeling and Performance Analysis of Hybrid Localization Using Inertial Sensor, RFID and Wi-Fi Signal

Liu, Guanxiong 29 April 2015 (has links)
The development in wireless technology, mobile smart devices and Internet of Things has gave birth to a booming era or the wireless indoor geolocation. This technology have been increasingly used within our daily life and help people to build up the tracking system which could be used by fulfillment centers and grocery stores. To achieve higher localization accuracy with wireless geolocation, we need a higher density of deployment which involves high deployment and maintenance cost. To balance the accuracy and the cost, people have begun using wireless localization employing inertial navigation system (INS) which provide speed and direction of movement. When we combine Radio Frequency (RF) localization with INS, we have a hybrid INS/RF localization system which can achieve high localization accuracy with low cost. In this thesis, we use accelerometers and magnetometers in an Android smart phone to build a hybrid INS/RF system and use two different technologies for RF localization: Radio Frequency Identification Device (RFID) and Wi-Fi. Using this system, we conducted measurements of the hybrid localization system and evaluate its performance. The specific contributions of the thesis are: (1)Empirical performance evaluation of the INS/RFID localization system. It relates the localization error to the number and position of RFID tags. (2)Model the effect of metallic objects on accuracy of magnetometer. The model shows the relation between direction error and distance to metallic component. (3)Model shadow fading in close proximity of RF transmitter. It builds a distance dependent shadow fading model. (4)Model based performance evaluation of hybrid localization. The test bench uses our models to simulate the hybrid localization data.
267

Design and development of hybrid energy harvesters

Li, Xuan January 2018 (has links)
Hybrid energy harvesters (HEHs) targeting multiple energy forms have been drawing increasing interest in recent years. While large scale photovoltaic power plants are capable of providing energy for domestic usage, research has also been focused on kinetic energy harvester with less power output which can be integrated into self-powered electronics such as implantable device, remote wireless sensor, wearables, etc. A number of successful designs of hybrid energy harvesters have been demonstrated which could scavenge solar and kinetic energy simultaneously. However the structures remain complicated; the majority of the designs involve different types of energy harvesters connected in series, which involves complex fabrication processes. Here, a simple structure based on a p-n junction piezoelectric nanogenerator (NG) was designed. The utilization of columnar piezoelectric n-type ZnO nanorods coated with light absorber layer enabled the device to harvest both kinetic and solar energy. This was adapted to either form a N719-based dye-sensitized solar cell (N719-HEH), or a perovskite solar cell (PSC-HEH). To allow high processing temperatures while maintaining mechanical flexibility, Corning© Willow™ (CW) glass substrate was used and compared to the more common ITO/PET. CW showed 56% lower charge transfer resistance and a related 4 times fold increase in power conversion efficiency for N719-HEHs. Oscillation (NG effect) and illumination (PV effect) testing indicated that both N719-HEHS and PSC-HEHs operated as kinetic and solar energy harvesters separately, with the current generated by the photovoltaic orders of magnitude greater than it from mechanical excitation. In addition, under illumination, both N719-HEHs and PSC-HEHs demonstrated further current output enhancement when oscillation was applied. The fact that the current output under NG+PV condition was higher than the summation of current output achieved under NG and PV conditions individually, suggests the piezoelectric potential originated from ZnO affected the charge dynamics within the devices. Thus, HEHs with enhanced output were successfully designed and developed.
268

Hybrid-electric propulsion systems for aircraft

Friedrich, Christian January 2015 (has links)
No description available.
269

Síntese de cerâmicas nanoestruturadas híbridas /

Simões, Luiz Gustavo Pagotto. January 2009 (has links)
Resumo: Nos últimos anos materiais com propriedades híbridas têm sido muito estudados, um exemplo é a compatibilização de cerâmicas em matrizes poliméricas. Neste trabalho, foi estudada uma metodologia para criar funcionalidades em nanomateriais por intermédio da síntese e modificação da superfície de cerâmicas (TiO2 e SiO2) e compósitos (Tio2/Ag e SiO2/Ag). Inicialmente foi estudada a reação entre o 3-aminopropiltrietoxisilano (APS) e nanopartículas comerciais de TiO2 e SiO2, em que os resultaados e espectroscopia na região do infra-vermelho (IV) e análise elementar de carbono (CHN) mostraram que a reação entre o siloxano e as partículas ocorre, formando um híbrido. Em seguida foram realizadas sínteses pelo método sol-gel dos óxidos e dos compósitos de TiO2/Ag e SiO2/Ag e ambos foram funcionalizados com siloxano. O APS foi introduzido na reação posteriormente a formação das partículas gerando um material híbrido. Os resultados de IV ilustram que todos os materiais foram funcionalizados, pois ilustravam as absorções em aproximadamente 1600 e 3000 cm-1, atribuídos ao estiramento da ligação CH2-NH@. A funcionallização foi fundamenetal para que filmes de TiO2/APS pudessem ser aplicados por dip-coating em superfícies de vidros a 150 gráus C, com excelente propriedades self-clean, determinadas pela degradação da Rodamina B. Os nanocompósitos de SiO2/Ag com APS apresentaram propriedades bactericidas segundo a norma JIS Z 2801 quando aplicado na forma de filmes finos em superfície de vidro ou incorporado em matriz polimérica de polipropileno. / Abstract: In recent years, materials with hybrid properties have been studied, and one example is the compatibility of ceramics with polymeric matrix. In this work, we have studied a method to introduce functionalities in nanomaterials through the synthesis and surface modification of ceramics (TiO2 and SiO2) and composites (TiO2/Ag and SiO2/Ag). Initialy it were studied the reaction between the 3-aminopropyltriethoxysilane (APS) and commercial nanoparticles of TiO2 and SiO2, where the results of infra-red spectroscopy (CHN) showed that the reaction between the siloxane and the particles occurs, resulting in hybrid materials. Then, it was carried out syntheses of oxides by the method of sol-gel and composites of TiO2/Ag and SiO2/Ag both functionalized with siloxane. The APS was introduced in the reaction after the formation of particles given rise hybrid materials. The results of IR ilustrated that all materials have been functionalized, as illustrated in the absortion around 1600 and 3000 cm-1, attributed to the stretching of CH2-NH2 bonding. The functionalization was crucial by dip-coating on glass surfaces at 150 degrees C films of TiO2/APS. With excellent self-clean properties, determined by the degradation of rhodamine B. The nanocomposites of APS SiO2/Ag exhibits bactericidal properties according to JIS Z 2801 standard when applied as thin films on glass surface or embedded in polymeric matrix of polypropylene. / Orientador: Elson Longo da Silva / Coorientador: José Arana Varela / Banca: Mario Cilense / Banca: Adhemar Colla Ruvolo Filho / Banca: Renato de Figueiredo Jardim / Banca: Sidnei Antonio Pianaro / Doutor
270

Particle separation via the hybrid application of optical and acoustic forces

O'Mahoney, Paul January 2015 (has links)
Non-contact manipulation technologies present a useful and powerful means of handling particles or cells. Such techniques are of interest in regenerative medicine applications, and in particular the scalability of these techniques is an area of active research. Optical trapping is a precise and dextrous method of manipulating particles with the forces exerted by a laser beam, while acoustic trapping is a scalable technique capable of exerting a force on particles through standing wave resonance. These complimentary modalities can be utilised in a hybrid system to give a resultant technique that borrows from the strengths of each individual method. In this thesis, methods of force balancing, using optics and acoustics, are explored, both independently and in combination with each other. A technique for 3D acoustic trapping in glass capillaries is shown, utilising the two pairs of opposing channel walls and the air-water interfaces of two air bubbles as acoustic reflectors. Standing waves set up between these surfaces show discrete acoustic trapping sites for varying lengths of fluid cavity. A method of optical radiation force balancing is observed in a 3D potential energy landscape, using similar principles as seen in particle trapping with counter-propagating beams. Tuning of the radiation force balance in this system allows particles to, instead of being pinned to the surface by the radiation force from the optical pattern, become localised at discrete planes of trapping sites throughout the fluid volume. A hybrid force balance separation method using the optical and acoustic forces is devised using a single laser beam as the primary deflection mechanism with acoustic trapping providing both localisation and a force balance with the optics. Separation of different sized particles is observed, with larger scale optical deflection mechanisms and their resultant thermal effects demonstrated.

Page generated in 0.0605 seconds