• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 18
  • 9
  • Tagged with
  • 49
  • 48
  • 37
  • 37
  • 32
  • 28
  • 28
  • 28
  • 28
  • 26
  • 22
  • 20
  • 20
  • 20
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs)

Hoffmann, Herbert C. 05 August 2014 (has links) (PDF)
Es wurden verschiedene NMR-spektrokopische Messungen an flexiblen und chiralen MOFs durchgeführt. Zur Untersuchung der Porensysteme kamen 129Xe-NMR und 13C-NMR an adsorbiertem CO2 zum Einsatz, während die MOF-Gitter und ihre Wechselwirkungen mit adsorbierten Gastmolekülen mittels 13C- und 1H-MAS-NMR-Spektroskopie studiert wurden. Während DUT-8(Ni) Flexibilität zeigt, weist DUT-8(Cu) ein starres Gitter auf. Die Flexibilität der sogenannten Solid-Solutions hängt in ausgeprägter Weise vom Verhältnis der funktionalisierten bdc-Linker 2,5-bme-bdc und db-bdc ab. Dieses Verhältnis hat zudem einen großen Einfluss auf die Orientierung der adsorbierten CO2-Moleküle. Es wurde erstmals eine Methode vorgestellt, die den Festkörper-NMR-spektroskopischen Nachweis chiraler Seitengruppen in chiralen MOFs erlaubt, wie anhand des chiral modifizierten UMCM-1 (ChirUMCM-1) demonstriert wurde. Die Chiralität kann einen NMR-spektroskopisch messbaren Einfluss auf die intrinsische Dynamik des MOF-Gitters ausüben, wie am chiral modifizierten DUT-32 deutlich wurde, dessen chirale Seitengruppe selektiv 15N- und 13C-isotopenmarkiert wurde.
42

Synthese und Charakterisierung neuartiger Bismutoxido-Cluster als molekulare Vorstufen für organisch-anorganische Hybridmaterialien

Miersch, Linda 15 June 2012 (has links)
In der vorliegenden Arbeit wird die Synthese neuartiger, polynuklearer Bismutoxido-Cluster sowie deren Potential zur Verwendung als Bausteine zum Aufbau organisch-anorganischer Hybridmaterialien beschrieben. Die molekularen Verbindungen werden nach partieller Hydrolyse eines basischen Bismutnitrats in DMSO erhalten. Durch Zugabe von Additiven wie Carbon- und Sulfonsäuren können funktionalisierte Bismutoxido-Cluster erzeugt werden, die eine gute Löslichkeit in organischen polaren Lösungsmitteln besitzen. Die Charakterisierung der Produkte erfolgte mittels Einkristallröntgenstrukturanalyse, NMR- und IR-Spektroskopie sowie ESI-Massenspektrometrie. Erste Untersuchungen zur Synthese röntgenopaker organisch-anorganischer Hybridmaterialien auf der Basis von Bismutoxido-Clustern und Methylmethacrylat wurden durchgeführt. Hierzu wurde der nanoskalige Bismutoxido-Cluster [Bi38O45(OMc)24] als anorganischer Baustein gewählt. Die Oberfläche des Bismut-Sauerstoff-Gerüsts dieser Verbindung ist mit Methacrylat-Liganden bedeckt, welche eine gute Löslichkeit vermitteln und durch ihre polymerisierbaren Funktionalitäten eine kovalente Anbindung z. B. an Vinylmonomere ermöglichen. Die radikalische Copolymerisation von [Bi38O45(OMc)24] mit Methylmethacrylat liefert transparente Komposite, die anhand von Festkörper-NMR-Spektroskopie, IR-Spektroskopie sowie TG- und DSC-Analyse charakterisiert wurden.
43

NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs): NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs)

Hoffmann, Herbert C. 17 July 2014 (has links)
Es wurden verschiedene NMR-spektrokopische Messungen an flexiblen und chiralen MOFs durchgeführt. Zur Untersuchung der Porensysteme kamen 129Xe-NMR und 13C-NMR an adsorbiertem CO2 zum Einsatz, während die MOF-Gitter und ihre Wechselwirkungen mit adsorbierten Gastmolekülen mittels 13C- und 1H-MAS-NMR-Spektroskopie studiert wurden. Während DUT-8(Ni) Flexibilität zeigt, weist DUT-8(Cu) ein starres Gitter auf. Die Flexibilität der sogenannten Solid-Solutions hängt in ausgeprägter Weise vom Verhältnis der funktionalisierten bdc-Linker 2,5-bme-bdc und db-bdc ab. Dieses Verhältnis hat zudem einen großen Einfluss auf die Orientierung der adsorbierten CO2-Moleküle. Es wurde erstmals eine Methode vorgestellt, die den Festkörper-NMR-spektroskopischen Nachweis chiraler Seitengruppen in chiralen MOFs erlaubt, wie anhand des chiral modifizierten UMCM-1 (ChirUMCM-1) demonstriert wurde. Die Chiralität kann einen NMR-spektroskopisch messbaren Einfluss auf die intrinsische Dynamik des MOF-Gitters ausüben, wie am chiral modifizierten DUT-32 deutlich wurde, dessen chirale Seitengruppe selektiv 15N- und 13C-isotopenmarkiert wurde.
44

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 07 November 2016 (has links)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.
45

Zinnalkoxide als Präkursoren für zinnhaltige Nanokomposite

Leonhardt, Christian 14 November 2016 (has links)
In der vorliegenden Arbeit wird die Synthese von neuartigen Zinn(II)alkoxiden, deren Potential für die Zwillingspolymerisation und die Darstellung von zinnhaltigen organisch-anorganischen Nanokompositen beschrieben. Partielle Hydrolyse der Zinn(II)alkoxide führt zur Bildung von fünf- und sechskernigen Zinnoxidoclustern, die eine gute Löslichkeit in organischen polaren Lösungsmitteln besitzen. Eine Nachbehandlung der durch Zwillingspolymerisation erhaltenen Hybridmaterialien unter reduzierenden Bedingungen (Ar/H2) liefert Nanokomposite bestehend aus Zinnnanopartikeln eingebettet in eine Kohlenstoff/Siliziumdioxid-Matrix. Weiterhin werden verschiedene metallhaltige Additive wie z.B. Carboxylate in der Zwillingspolymerisation verwendet und deren Eignung zur Darstellung von zinnhaltigen Nanokompositen sowie zur Legierungsbildung mit Zinn im Nanokomposit untersucht. Mit ausgewählten Materialien werden elektrochemische Messungen durchgeführt, wobei deren potentieller Einsatz als Anodenmaterial für Lithiumionen-Batterien geprüft wird (Kooperation BASF SE, Research Performance Materials GMV/P). Die Charakterisierung der neu synthetisierten Verbindungen und Nanokomposite erfolgt unter anderem mittels Einkristallröntgenstrukturanalyse, Röntgenpulverdiffraktometrie, NMR-Spektroskopie, Infrarotspektroskopie, Elektronenmikroskopie sowie thermischen Analysemethoden
46

Ternary organic–inorganic nanostructured hybrid materials by simultaneous twin polymerization

Weißhuhn, J., Mark, T., Martin, M., Müller, P., Seifert, A., Spange, S. 06 March 2017 (has links)
The acid and base catalyzed simultaneous twin polymerization (STP) of various 2,2′-disubstituted 4H-1,3,2-benzodioxasiline derivatives 2a–d with 2,2′-spirobi[4H-1,3,2-benzodioxasiline] (1) are presented in this paper. The products are nanostructured ternary organic–inorganic hybrid materials consisting of a cross-linked organic polymer, silica and a disubstituted polysiloxane. It can be demonstrated whether and in which extent the copolymerization of the two inorganic fragments of 1 and 2 takes place among the STP and how the molar ratio of the two components determines the structure formation of the resulting hybrid material. Steric and electronic effects of the substituents at the silicon center of 2 on the molecular structure formation and the morphology of the resulting hybrid material were investigated by means of solid state CP MAS 29Si and 13C NMR spectroscopy as well as high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mechanical properties (hardness and Young's modulus) of the hybrid materials were analyzed by means of nanoindentation measurements. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
47

Synthese nanostrukturierter, organisch-anorganischer Hybridmaterialien über Zwillingspolymerisation

Löschner, Tina 05 July 2013 (has links)
Im Fokus dieser Arbeit stand die Methode Zwillingspolymerisation zur Synthese organisch-anorganischer Hybridmaterialien. Die simultane Zwillingspolymerisation wird als neues Konzept zur gezielten Herstellung homogener, nanostrukturierter Hybridmaterialien unterschiedlicher Zusammensetzung vorgestellt. Hierfür wurden die Zwillingsmonomere 2,2’-Spirobi[4H-1,3,2-benzodioxasilin] und 2,2 Dimethyl-4H-1,3,2-benzodioxasilin in einem Arbeitsschritt gemeinsam polymerisiert. Die erhaltenen Phenolharz-Siliciumdioxid/Dimethylsiloxan-Hybridmaterialien weisen aufgrund einstellbarer Syntheseparameter unterschiedliche Eigenschaftsprofile auf, die systematisch analysiert wurden. Die Charakterisierung der Produkte erfolgte mit Hilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, DSC, TGA-MS, sowie durch Extraktionsversuche und die Erzeugung und Analyse poröser Materialien. Neben der simultanen Zwillingspolymerisation wird die Synthese, Charakterisierung und thermisch induzierte Polymerisation literaturunbekannter Silicium-Spiroverbindungen mit einfach- oder zweifach substituierter Salicylalkohol-Einheit beschrieben. Hierbei wurden nanostrukturierte Hybridmaterialien mit teils hohem löslichen Anteil erhalten. Die Produktbildung wird in Abhängigkeit von der Entstehung und Weiterreaktion gefundener Chinonmethid-Strukturen diskutiert.
48

From molecular germanates to microporous Ge@C via twin polymerization

Kitschke, Philipp, Walter, Marc, Rüffer, Tobias, Lang, Heinrich, Kovalenko, Maksym V., Mehring, Michael 31 March 2016 (has links)
Four molecular germanates based on salicyl alcoholates, bis(dimethylammonium) tris[2-(oxidomethyl)phenolate(2-)]germanate (1), bis(dimethylammonium) tris[4-methyl-2-(oxidomethyl)phenolate(2-)]germanate (2), bis(dimethylammonium) tris[4-bromo-2-(oxidomethyl)phenolate(2-)]germanate (3) and dimethylammonium bis[2-tert-butyl-4-methyl-6-(oxidomethyl)phenolate(2-)][2-tert-butyl-4-methyl-6-(hydroxymethyl)phenolate(1-)]germanate (4), were synthesized and characterized including single crystal X-ray diffraction analysis. In the solid state, compounds 1 and 2 exhibit one-dimensional hydrogen bonded networks, whereas compound 4 forms separate ion pairs, which are connected by hydrogen bonds between the dimethylammonium and the germanate moieties. The potential of these compounds for thermally induced twin polymerization (TP) was studied. Germanate 1 was converted by TP to give a hybrid material (HM-1) composed of phenolic resin and germanium dioxide. Subsequent reduction with hydrogen provided a microporous composite containing crystalline germanium and carbon (Ge@C – C-1, germanium content ∼20%). Studies on C-1 as an anode material for Li-ion batteries revealed reversible capacities of ∼370 mA h gGe@C−1 at a current density up to 1384 mA g−1 without apparent fading for 500 cycles. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
49

Experimental and theoretical studies on germanium-containing precursors for twin polymerization

Kitschke, Philipp 10 June 2016 (has links)
Im Fokus dieser Arbeit standen zwei Ziele. Zum einem war es Forschungsgegenstand, dass Konzept der Zwillingspolymerisation auf germaniumhaltige, molekulare Vorstufen wie zum Beispiel Germylene, spirozyklische Germaniumverbindungen und molekulare Germanate zu erweitern und somit organisch-anorganische Komposite beziehungsweise Hybridmaterialien darzustellen. Dazu wurden neuartige Germaniumalkoxide auf der Basis von Benzylalkoholaten, Salicylalkoholaten sowie Benzylthiolaten synthetisiert, charakterisiert und auf ihre Fähigkeit Komposite beziehungsweise Hybridmaterialien über den Prozess der Zwillingspolymerisation zu erhalten studiert. Ein zweites Ziel dieser Arbeit war es, Beziehungen zwischen der Struktur und der Reaktivität dieser molekularen Vorstufen sowie deren Einfluss auf die Eigenschaften der erhaltenen Polymerisationsprodukte zu identifizieren und systematisch zu untersuchen. Hierfür wurden zum einen verschiedene Substituenten, welche unterschiedliche elektronische sowie sterische Eigenschaften aufweisen, an den aromatischen Einheiten der molekularen Vorstufen eingeführt. Die Effekte der Substituenten auf den Prozess der Zwillingspolymerisation und auf die Eigenschaften der Komposite beziehungsweise Hybridmaterialien wurden für die Verbindungsklasse der Germanium(II)salicylalkoholate, der molekularen Germanate sowie der spiro-zyklischen Siliziumsalicylalkoholate untersucht. Spirozyklische Siliziumsalicylalkoholate, wie zum Beispiel 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin], wurden im Rahmen dieser Arbeit mit einbezogen, da sie aufgrund ihres nahezu idealen Zwillingspolymerisationsprozesses geeignete Modelverbindungen für Reaktivitätsstudien darstellen. Zudem wurde der Einfluss der Substituenten auf die Charakteristika der aus den Kompositen beziehungsweise Hybridmaterialien erhaltenen Folgeprodukte (poröse Kohlenstoffmaterialien und oxydische Materialien) studiert. Des Weiteren wurde eine Serie von spirozyklischen Germaniumthiolaten, welche isostrukturell zu 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin] sind, synthetisiert, um systematisch den Einfluss der Chalkogenide, Sauerstoff und Schwefel, in benzylständiger sowie phenylständiger Position auf deren Reaktionsvermögen im Polymerisationsprozess zu untersuchen. Die experimentellen Ergebnisse zu den Struktur-Reaktivitätsbeziehungsstudien wurden, soweit es jeweils durchführbar war, mittels quantenchemische Rechnungen validiert und die daraus gezogenen Schlüsse in die Diskussion zur Interpretation der experimentellen Ergebnisse mit einbezogen.:Contents List of Abbreviations S. 11 1 Introduction S.14 2 Germanium alkoxides and germanium thiolates S. 18 2.1 Preamble S. 18 2.2 Germanium alkoxides S. 18 2.2.1 Germanium(II) alkoxides S. 20 2.2.2 Germanium(IV) alkoxides S. 23 2.2.3 Alkoxidogermanates S. 29 2.3 Germanium thiolates S. 31 2.3.1 Germanium(II) thiolates S. 33 2.3.2 Germanium(IV) thiolates S. 34 2.3.3 Thiolatogermanates and cationic germanium thiolato transition metal complexes S. 36 2.4 Germanium alkoxido thiolates S. 38 2.5 Concluding remarks S. 40 3 Individual Contributions S. 43 4 Microporous Carbon and Mesoporous Silica by Use of Twin Polymerization: An integrated Experimental and Theoretical Approach on Precursor Reactivity S. 46 4.1 Abstract S. 46 4.2 Introduction S.46 4.3 Results and Discussion S. 48 4.3.1 Synthesis and Characterization S. 48 4.3.2 Thermally induced twin polymerization of monosubstituted Precursors (para position) S.49 4.3.2.1 Studies on reactivity according to thermally induced twin polymerization S. 50 4.3.2.2 Characterization of the hybrid materials as obtained by thermally induced twin polymerization S. 51 4.3.2.3 Thermally induced twin polymerization of di-substituted precursors (ortho and para position) S. 52 4.3.2.4 Conclusions drawn for the thermally induced twin polymerization S. 54 4.3.3 Proton-assisted twin polymerization S. 54 4.3.3.1 Studies on the reactivity according to proton-assisted twin polymerization S.55 4.3.3.2 Characterization of the hybrid materials as obtained by proton-assisted twin polymerization S.56 4.3.3.3 Computational studies on proton-assisted twin polymerization S. 58 4.3.3.4 Conclusions drawn for the process of proton-assisted twin polymerization S. 60 4.3.4 Characterization of the porous materials S.61 4.4 Conclusions S.64 4.5 Experimental Section S. 65 4.5.1 General S.65 4.5.2 General procedure for the synthesis of phenolic resin-silica hybrid materials by thermally induced twin polymerization in melt - exemplified for compound 1 S. 66 4.5.3 General procedure for the synthesis of phenolic resin-silica hybrid materials by proton-assisted twin polymerization in solution - exemplified for compound 1 S. 66 4.5.4 General procedure for the synthesis of microporous carbon - exemplified for hybrid material HM-1T S. 66 4.5.5 General procedure for the synthesis of mesoporous silica - exemplified for hybrid material HM-1T S. 67 4.5.6 Single-Crystal X-ray Diffraction Analyses S. 67 4.5.7 Computational Details S. 67 4.6 Acknowledgments S. 68 4.7 Keywords S.68 4.8 Supporting Information Chapter 4 S. 69 5 Synthesis of germanium dioxide nanoparticles in benzyl alcohols – a comparison S. 82 5.1 Abstract S. 82 5.2 Introduction S. 82 5.3 Results and Discussion S.83 5.4 Conclusions S. 87 5.5 Experimental Section S. 87 5.5.1 General S. 87 5.5.2 Syntheses S. 88 5.5.3 Synthesis of GeO2 in ortho-methoxy benzyl alcohol – sample A S. 88 5.5.4 Synthesis of GeO2 in benzyl alcohol under inert conditions – sample B S. 89 5.5.5 Synthesis of GeO2 in benzyl alcohol under ambient conditions – sample C S. 89 5.6 Acknowledgments S. 89 5.7 Keywords S.89 5.8 Supporting Information Chapter 5 S. 90 6 From a Germylene to an “Inorganic Adamantane”: [{Ge₄(μ-O)₂(μ-OH)₄}{W(CO)₅}₄]∙4THF S. 93 6.1 Abstract S.93 6.2 Introduction S. 93 6.3 Results and Discussion S. 94 6.4 Conclusions S. 98 6.5 Experimental Section S. 99 6.5.1 General S.99 6.5.2 Synthesis of germanium(II) (2-methoxyphenyl)methoxide (9) S. 99 6.5.3 Synthesis of [{Ge4(μ-O)2(μ-OH)4}{W(CO)5}4]·4THF (10·4THF) S. 100 6.5.4 Single-Crystal X-ray Diffraction Analyses S. 100 6.5.4.1 Crystal Data for (9)2 S. 101 6.5.4.2 Crystal Data for 10·4THF S. 101 6.5.5 Computational Details S. 101 6.6 Acknowledgments S. 101 6.7 Keywords S.101 6.8 Supporting Information Chapter 6 S. 102 7 Synthesis, characterization and Twin Polymerization of a novel dioxagermine S. 110 7.1 Abstract S. 110 7.2 Introduction S.110 7.3 Results and Discussion S. 111 7.3.1 Single-crystal X-ray diffraction analysis S. 111 7.3.2 IR spectroscopy S. 112 7.3.3 Mass spectrum S. 114 7.3.4 DSC/TGA analysis S. 116 7.3.5 Polymerization S. 117 7.4 Conclusions S. 118 7.5 Materials and Methods S.118 7.5.1 General S. 118 7.5.2 Synthesis of 5-bromo-2-hydroxybenzyl alcohol S. 119 7.5.3 Synthesis of di-tert-butyl-di-ethoxy germane S.119 7.5.4 Synthesis of 6-bromo-2,2-di-tert-butyl-4H-1,3,2-benzo[d]dioxagermine (11) S. 120 7.5.5 Polymerization of compound 11 S. 120 7.5.6 X-ray diffraction analysis of compound 11 S.120 7.5.6.1 Crystal data for compound 11 S.120 7.5.7 Computational Details S.121 7.6 Acknowledgments S.121 7.7 Keywords S. 121 7.8 Supporting Information Chapter 7 S. 122 8 Intramolecular C-O Insertion of a Germanium(II) Salicyl Alcoholate: A Combined Experimental and Theoretical Study S. 125 8.1 Abstract S.125 8.2 Introduction S. 125 8.3 Results and Discussion S.126 8.3.1 Syntheses and Characterization S. 126 8.3.2 1H NMR Spectroscopic Studies S.132 8.3.3 DFT-D Calculations S.134 8.4 Conclusions S. 137 8.5 Experimental Section S. 138 8.5.1 General S. 138 8.5.2 Synthesis of germanium(II) 2-tert-butyl-4-methyl-6-(oxidomethyl)phenolate (12) S. 139 8.5.3 Synthesis of 2,4,6,8-tetrakis(3-tert-butyl-5-methyl-2-oxidophenyl)methanide-1,3,5,7,2,4,6,8-tetraoxidogermocane (13) S. 139 8.5.3.1 Method a) S.139 8.5.3.2 Method b) S. 140 8.5.4 Synthesis of 7,8'-di-tert-butyl-5,6'-dimethyl-3H,4'H-spiro[benzo[d][1,2]oxager-mole-2,2'-benzo[d][1,3,2]dioxagermine] (14) S. 140 8.5.4.1 Method a) S. 140 8.5.4.2 Method b) S. 141 8.5.4.3 Method c) S. 141 8.5.5 Synthesis of the [4-(dimethylamino)pyridine][germanium(II)-2-tert-butyl-4-meth-yl-6-(oxidomethyl)phenolate] (15) S. 141 8.5.6 1H NMR spectroscopic study i) S. 142 8.5.7 1H NMR spectroscopic study ii) S. 142 8.5.7.1 Method a) S. 142 8.5.7.2 Method b) S. 142 8.5.8 1H NMR spectroscopic study iii) S. 142 8.5.8.1 Method a) S. 142 8.5.8.2 Method b) S. 142 8.5.9 1H NMR spectroscopic study iv) S. 143 8.5.10 1H NMR spectroscopic study of the mixture of complex 15 and 3-tert-butyl-2-hydroxy-5-methylbenzyl alcohol in CDCl3 S. 143 8.5.11 1H NMR spectroscopic study of complex 15 in CDCl3 at elevated temperature S. 143 8.5.12 Reaction of complex 15 at elevated temperature S. 143 8.5.13 Single-crystal X-ray diffraction analyses S. 143 8.5.14 Computational Details S.144 8.6 Acknowledgments S. 145 8.7 Keywords S.145 8.8 Supporting Information Chapter 8 S. 146 9 Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries S. 159 9.1 Abstract S. 159 9.2 Introduction S. 159 9.3 Results and Discussion S. 160 9.3.1 Synthesis and Characterization of germylenes S. 160 9.3.2 Twin polymerization S. 164 9.3.2.1 Studies on the reactivity S. 164 9.3.2.2 Characterization of the hybrid materials obtained by thermally induced twin polymerization S. 166 9.3.3 Synthesis and characterization of porous materials S. 168 9.3.4 Electrochemical measurements S. 170 9.4 Conclusions S. 172 9.5 Experimental Section S.172 9.5.1 General S.172 9.5.2 Synthesis of germanium(II) 2-(oxidomethyl)phenolate (16) S. 174 9.5.3 Synthesis of germanium(II) 4-methyl-2-(oxidomethyl)phenolate (17) S. 174 9.5.4 Synthesis of germanium(II) 4-bromo-2-(oxidomethyl)phenolate (18) S. 175 9.5.5 General procedure for the synthesis of phenolic resin-germanium oxide hybrid materials by thermally induced twin polymerization in melt - exemplified for compound 16 S. 175 9.5.6 General procedure for the synthesis of porous Ge@C materials - exemplified for hybrid material HM-16 S.175 9.5.7 General procedure for the synthesis of germanium oxide - exemplified for hybrid material HM-16 S.176 9.5.8 Single-crystal X-ray diffraction analyses S. 176 9.5.9 Computational Details S. 177 9.5.10 Electrode fabrication, cell assembly and electrochemical measurements S. 178 9.6 Acknowledgments S.178 9.7 Keywords S. 178 9.8 Supporting Information Chapter 9 S.179 10 From molecular germanates to microporous Ge@C via twin polymerization S.199 10.1 Abstract S.199 10.2 Introduction 199 10.3 Results and Discussion S. 201 10.3.1 Syntheses and Characterization S. 201 10.3.2 Twin polymerization of germanate 19 S. 204 10.3.3 Synthesis and characterization of the porous materials S. 205 10.3.4 Electrochemical measurements S.206 10.4 Conclusions S. 207 10.5 Experimental Section S. 208 10.5.1 General S. 208 10.5.2 Synthesis of bis(dimethylammonium) tris[2-(oxidomethyl)phenolate(2-)]germa-nate (19) S. 209 10.5.3 Synthesis of bis(dimethylammonium) tris[4-methyl-2-(oxidomethyl)pheno-late(2-)]germanate (20) S. 210 10.5.4 Synthesis of bis(dimethylammonium) tris[4-bromo-2-(oxidomethyl)pheno-late(2-)]germanate (21) S.210 10.5.5 Synthesis of dimethylammonium bis[2-tert-butyl-4-methyl-6-(oxidomethyl)phe-nolate(2-)][2-tert-butyl-4-methyl-6-(hydroxymethyl)phenolate(1-)]germanate (22) S. 211 10.5.6 Synthesis of phenolic resin-germanium dioxide hybrid materials by thermally induced twin polymerization in melt - HM-19 S. 211 10.5.7 Synthesis of porous Ge@C material C-19 starting from HM-19 S. 212 10.5.8 Synthesis of germanium dioxide material Ox-19 - starting from HM-19 S.212 10.5.9 Single-crystal X-ray diffraction analyses S. 212 10.5.10 Electrode fabrication, cell assembly and electrochemical measurements S.213 10.6 Acknowledgments S. 214 10.7 Keywords S. 214 10.8 Supporting Information Chapter 10 S.215 11 Chiral Spirocyclic Germanium Thiolates – An Evaluation of Their Suitability for Twin Polymerization based on A Combined Experimental and Theoretical Study S.226 11.1 Abstract S.226 11.2 Introduction S. 226 11.3 Results and Discussion S.227 11.3.1 Syntheses and Characterization S. 227 11.3.2 Studies on twin polymerization S.229 11.3.3 Computational studies on proton-assisted twin polymerization S. 232 11.4 Conclusions S. 235 11.5 Acknowledgments S. 236 11.6 Keywords S.236 11.7 Supporting Information Chapter 11 S.237 12 Concluding remarks S. 257 12.1 Discussion S.257 12.1.1 Twin polymerization of germanium-containing precursors S. 257 12.1.2 Reactivity studies of precursors towards their twin polymerization S.260 12.2 Summary and Outlook S. 264 Selbständigkeitserklärung S.266 Curriculum Vitae S.267 Publications S. 268 List of Publications in Peer-Reviewed Journals S. 268 List of Conference Contributions S.269 Research proposals, additional conference and summer school participations S. 270 Acknowledgments S. 271 References S. 272

Page generated in 0.1106 seconds