• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1067
  • 488
  • 232
  • 157
  • 93
  • 51
  • 24
  • 16
  • 15
  • 12
  • 10
  • 10
  • 9
  • 6
  • 6
  • Tagged with
  • 2764
  • 779
  • 394
  • 356
  • 245
  • 230
  • 226
  • 211
  • 198
  • 194
  • 188
  • 187
  • 179
  • 177
  • 176
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1201

Environmental Influences on Wood Structure and Water Transport in the Model Tree Populus

Plavcová, Lenka Unknown Date
No description available.
1202

Frost Heave: New Ice Lens Initiation Condition and Hydraulic Conductivity Prediction

Azmatch, Tezera Firew Unknown Date
No description available.
1203

Prediction of Rainfall Runoff for Soil Cover Modelling

Jubinville, Sarah K. Unknown Date
No description available.
1204

Reclamation of canal seepage affected land

Millette, Denis January 1989 (has links)
Deep interceptor drains are commonly used to control canal seepage in southern Alberta, Canada. Recently, shallow grid drainage was introduced. A study was initiated in 1987 to assess the effectiveness of grid drainage to intercept canal and natural groundwater seepage and reclaim the resulting saline affected land. / Using a groundwater flow model, MODFLOW, it was found that a single deep interceptor drain would have failed to intercept all canal seepage and maintain the water table downslope of the canal below the 1.0 m design water table depth. Conversely, simulations indicated that with a grid drainage system, all canal and natural groundwater seepage would be intercepted and the water table would remain below the design water table depth, with or without irrigation recharge that would maintain a steady state salt balance. / The benefits of fall irrigation were demonstrated using three test plots near the canal.
1205

Application of fluid electrical conductivity logging for fractured rock aquifer characterisation at the University of the Western Cape's Franschhoek and Rawsonville research sites

Lasher, Candice January 2011 (has links)
<p>&nbsp / Characterisation of fractured rock aquifers is important when dealing with groundwater protection and management. Fractures are often good conduits for water and contaminants, leading to high flow velocities and the fast spread of contaminants in these aquifers. A cost effective methodology is required for the characterisation of the role of individual fractures contributing to flow to boreholes in fractured rock aquifers. Literature shows that some of the conventional methods used to characterise hydraulic properties in fractured rock aquifers are expensive, complicated, time consuming and are associated with some disadvantages such as over-or under- estimations of flow rates. iii This thesis evaluates the use of Fluid Electrical Conductivity (FEC) logging in fractured rock aquifers. This FEC data are compared to various traditional methods used to determine aquifer hydraulic properties applied at the Franschhoek and Rawsonville research sites. Both these sites were drilled into the fractured rock Table Mountain Group (TMG) Aquifer, forming one of the major aquifers in South Africa.</p>
1206

Performance evaluation of real-time bilateral teleoperation systems with wired and wireless network simulation

Liao, Stephen 20 December 2012 (has links)
This thesis presents a general simulation framework used for evaluating the performance of bilateral teleoperation systems under consistent and controllable network conditions. A teleoperation system is where an operator uses a master device to control a slave robot through a communication link. The communication link between the master and slave has an important impact on the system performance. Network emulation using ns-2 has been proposed as a way of simulating the communication link. It allows for the network conditions to be controlled and for repeatable results. The proposed setup was used to test the performance of a hydraulic actuator under various conditions of wired and wireless networks. Three control schemes were evaluated using various combinations of time delay and packet loss. The system was also tested simulating wireless communication between the master and slave to determine the effects of transmission power and distance on the performance of the system.
1207

Gestaltung und hydraulische Berechnung von Schachtüberfällen

Bollrich, Gerhard 22 May 2013 (has links) (PDF)
Mit dem Begriff "Schachtüberfall" wird eine Hochwasserentlastungsanlage bezeichnet, bei der Überschußwasser von einem horizontalen, im Grundriß meist kreisförmigen Überfall in einen senkrechten oder schrägen Schacht geleitet und durch einen Stollen mit geringem Gefälle ins Unterwasser abgeführt wird. Der Fallschacht hat in der Regel Kreisquerschnitt und ist durch einen 90°-Krümmer mit dem Ablaufstollen verbunden. Schachtüberfälle werden in zunehmenden Maße zur Hochwasserentlastung bei Erd- und Steindämmen verwendet. Sie werden getrennt vom Dammbauwerk im Hang oder als freistehende Türme im Becken errichtet. (...)
1208

Three-dimensional numerical modeling of flow dynamics and investigation of temporal scour hole development around paired stream deflectors in a laboratory flume

Haltigin, Tim January 2005 (has links)
A three-dimensional numerical model (PHOENICS) was used to investigate the role of stream deflector angle and length on the flow field in a rectangular laboratory flume. Subsequent bed topography surveys were performed to examine the role of obstruction angle on scour hole development over time. The model was capable of predicting laboratory velocity and turbulent kinetic energy measurements, performing better for flow over a flat stable bed than over a deformed sand bed. A new method of incorporating complex bed topography into a structured Cartesian mesh was developed in the process. Flow field properties such as dynamic pressure, velocity amplification, separation zone length and width, and downwelling extent and magnitude were found to be strongly dependent on deflector geometry. Equilibrium scour hole depths and geometry are also angle-dependent. A predictive equation was produced explaining the rate at which scour holes reach equilibrium, and compared well with existing literature. Finally, a method was developed whereby characteristics of the flow field over a flat, stable bed could be used to predict equilibrium scour hole geometry.
1209

CONTROL OF THE SURFICIAL FINE-GRAINED LAMINAE UPON STREAM CARBON AND NITROGEN CYCLES

Ford, William I, III 01 January 2014 (has links)
This dissertation investigated the impact of the Surficial Fine-Grained Laminae (SFGL) upon stream biogeochemical cycles to constrain stream C and N budgets. Collection and analysis of 8 years of transported sediment elemental and isotopic signatures, weekly, from a SFGL dominated stream, a novel dissolved C and N dataset, statistical and time-series analysis of sediment and dissolved data, and development of a comprehensive modeling framework that couples hydrodynamics, sediment, C and N biogeochemistry, and stable isotope sub-models to simulate fluvial C and N budgets was used. SFGL C modeling suggests benthic particulate C stocks and transport vary seasonally and annually but are in a state of long-term equilibrium which is governed by negative feedback mechanisms whereby high POC export due to extreme hydrologic events and high frequency hydrologic events reduces benthic particulate C stocks and inhibits benthic particulate C growth. Model distribution fitting suggests transported particulate C in SFGL streams is Gamma distributed; in which statistical moments are governed by variability of the SFGL. Stable isotope un-mixing of the bed source suggests that the SFGL has varying levels of carbon quality seasonally and annually, in which non-equilibrium conditions stem from extreme depositional events. Coupling stable isotope mass balance and SFGL fractionation processes into water quality modeling frameworks, reduced uncertainty of the C budget by nearly 60%, suggesting algal sloughing constitutes nearly 40% of the total organic C budget, shifting the balance from dissolved C to particulate C dominated. Time series analysis of the eight year dataset suggest nitrogen dynamics in the SFGL dominated stream were consistent with existing conceptual models when algal biomass is the prominent organic matter source in the SFGL, but contradicts conventional wisdom in winter through late spring when abiotic sorption appears prominent. The development of a new numerical model to simulate the fluvial N budget couples this new conceptual model of SFGL stream N dynamics to isotope mass-balances and C dynamics in order to provide a comprehensive management tool for restoration engineers. Meta-analysis and upscaling of results for regional to global scales will enable researchers to place the role of the SFGL in a broader context.
1210

DECELERATING OPEN CHANNEL FLOW OVER GRAVEL: TURBULENCE STRUCTURE & SENSOR DEVELOPMENT

Stewart, Robert L., III 01 January 2014 (has links)
This dissertation describes investigations of fully turbulent decelerating hydraulically roughbed flow over gravel and the development of technology to measure turbulence and associated sediment transport in streams. Theory is developed for predicting velocity distributions in simple uniform flow using the asymptotic invariance principle and tested using laboratory and field collected data. A mixed scale is developed that accounts for bed derived turbulent structures throughout the flows depth and is used to parameterize the external boundary’s effect on the flow for the logarithmic and outer layers. The asymptotic invariance principle and similarity analysis is conducted for the equations of motion in the outer region of decelerating flow over gravel to define equilibrium conditions for this class of flows with the velocity scale is the freestream velocity. The combination of time series and time averaged statistical analysis of turbulent flow is used to elucidate the structure of flow under decelerating conditions. Time averaged statistical measures of turbulence confirm results of others for higher Froude number approaching transcritical and time series analysis shows the effects of decelerating flow on turbulence to be frequency dependent. Wireless velocity sensors were developed and found capable of measuring time averaged velocity and able to resolve macroturbulence from time series data. A semi-theoretical model of elastic deformation of cantilever beams under hydraulic forcing was coupled with circuit theory to develop a calibration procedure for the VBS that requires only three measurement points, one of which is at zero velocity. Light based sensors are developed to estimate light attenuation in water for ecological research or estimating sediment concentration in water. A semi-theoretical scaling of light attenuation and sediment properties was developed which predicts light attenuation from sediment properties. The combination of new theory on open channel velocity, turbulent structure and field sensors for measuring turbulence and sediment offers the possibility to extend our laboratory knowledge to realistic flow situations.

Page generated in 0.0362 seconds