Spelling suggestions: "subject:"hydraulic"" "subject:"dydraulic""
1171 |
Development of A GIS Based Infrastructure Replacement Prioritization System; A Case StudyPickard, Brian D. 03 March 2006 (has links)
Maintenance, repair, and replacement of transmission mains and distribution system piping is expected to cost approximately $75 billion over the next two decades to ensure that public water systems are capable of providing the United States with safe drinking water. However, there is a significant gap between the funds available and the projected costs of infrastructure replacement or rehabilitation. Infrastructure Management Systems (IMS) have been developed to assist utilities and decision-makers in determining how to allocate resources for infrastructure. This project utilizes theTampa Water Department (TWD) as a case study to develop a tool for prioritizing infrastructure replacement.
TWD is responsible for managing over 2,240 miles of pipeline. Building booms in the 1920s and 1950s have inadvertently resulted in a significant need to replace or rehabilitate pipelines due to the aging of the overall water supply infrastructure. To address this problem, TWD is taking the first steps in applying IMS to transmission anddistribution pipelines. Currently, approximately 500 miles of water mains have been slated for replacement or rehabilitation. The TWD has a GIS that has been used to map and integrate information on main breaks, service line breaks, customer complaints and modeled water age. Information on fire hydrant spacing and line flushing dates are also integrated into the GIS.
Following development of the GIS based infrastructure replacement prioritization system, approximately 3,000 pipe segments were identified and queries were performed to help develop cost to benefit analyses. The results were used to develop a prioritized list of potential capital projects and incorporate the time value of money and event forecasting. The GIS was also used to develop indicators of the overall infrastructure condition. From this analysis it was possible to develop an approach to categorize projects and identify the resources needed to address high priority problems associated with undersized mains, unlined cast iron mains, asbestos cement mains, and hydraulic looping projects.
As water infrastructure rehabilitation and replacement needs increase in the future, the need for adaptable methods to prioritize capital spending will also increase.This study has demonstrated the ability to prioritize long-term and short-term infrastructure projects using a GIS platform in conjunction with databases and spreadsheets.
|
1172 |
Simulation of a parallel hydraulic hybrid refuse truckAnderson, Garrett Lance 20 February 2012 (has links)
A rear loading refuse truck was simulated with a conventional and hydraulic hybrid configuration. Models for the hydraulic hybrid components were developed to simulate the system. A control algorithm was developed using a stochastic dynamic programming approach. The results did not match those that are advertised by the commercially available systems, but reasons for this deviation are discussed. The predicted improvement in fuel economy ranged from 1% to 15% depending on variance in drive cycle and vehicle weight. A brief analysis of the cost of the hybrid system was also conducted based on an estimated drive cycle. This analysis showed that, at current fuel prices of about $4.00/gallon, the system may not make financial sense for a 10 year period of ownership. / text
|
1173 |
Multi-phase fluid-loss properties and return permeability of energized fracturing fluidsRibeiro, Lionel Herve Noel 20 August 2012 (has links)
With the growing interest in low-permeability gas plays, foam fracturing fluids are now well established as a viable alternative to traditional fracturing fluids. Present practices in energized fracturing treatments remain nonetheless rudimentary in comparison to other fracturing fluid technologies because of our limited understanding of multi-phase fluid-loss and phase behavior occurring in these complex fluids. This report assesses the fluid-loss benefits introduced by energizing the fracturing fluid.
A new laboratory apparatus has been specifically designed and built for measuring the leak-off rates for both gas and liquid phases under dynamic fluid-loss conditions. This report provides experimental leak-off results for linear guar gels and for N2-guar foam-based fracturing fluids under a wide range of fracturing conditions. In particular, the effects of the rock permeability, the foam quality, and the pressure drop are investigated. Analysis of dynamic leak-off data provide an understanding of the complex mechanisms of viscous invasion and filter-cake formation occurring at the pore-scale.
This study presents data supporting the superior fluid-loss behavior of foams, which exhibit minor liquid invasion and limited damage. It also shows direct measurements of the ability of the gas component to leak-off into the invaded zone, thereby increasing the gas saturation around the fracture and enhancing the gas productivity during flowback. Our conclusions not only confirm, but add to the findings of McGowen and Vitthal (1996) for linear gels, and the findings of Harris (1985) for nitrogen foams. / text
|
1174 |
Study on the feasibility of using electromagnetic methods for fracture diagnosticsSaliés, Natália Gastão 06 November 2012 (has links)
This thesis explores two ways of developing a fracture diagnostics tool capable of estimating hydraulic fracture propped length and orientation. Both approaches make use of an electrically conductive proppant. The fabrication of an electrically conductive proppant is believed to be possible and an option currently on the market is calcined petroleum coke. The first approach for tool development was based on principles of antenna resonance whereas the second approach was based on low frequency magnetic induction. The former approach had limited success due to the lack of resonant features at the stipulated operating conditions. Low frequency induction is a more promising approach as electromagnetic fields showed measurable changes that were dependent on fracture length in simulations. The operation of a logging tool was simulated and the data showed differences in the magnetic field magnitude ranging from 2% to 107% between fracture sizes of 20m, 50m, 80m, and 100m. Continuing research of the topic should focus not only on simulating more diverse fracture scenarios but also on developing an inversion scheme necessary for interpreting field data. / text
|
1175 |
Solving three-dimensional problems in natural and hydraulic fracture development : insight from displacement discontinuity modelingSheibani, Farrokh 26 September 2013 (has links)
Although many fracture models are based on two-dimensional plane strain approximations, accurately predicting fracture propagation geometry requires accounting for the three-dimensional aspects of fractures. In this study, we implemented 3-D displacement discontinuity (DD) boundary element modeling to investigate the following intrinsically 3-D natural or hydraulic fracture propagation problems: the effect of fracture height on lateral propagation of vertical natural fractures, joint development in the vicinity of normal faults, and hydraulic fracture height growth and non-planar propagation paths. Fracture propagation is controlled by stress intensity factor (SIF) and its determination plays a central role in LEFM. The DD modeling is used to evaluate SIF in Mode I, II and III at the tip of an arbitrarily-shaped embedded crack by using crack-tip element displacement discontinuity. We examine the accuracy of SIF calculation is for rectangular, penny-shaped, and elliptical planar cracks. Using the aforementioned model for lateral propagation of overlapping fractures shows that the curving path of overlapping fractures is strongly influenced by the spacing-to-height ratio of fractures, as well as the differential stress magnitude. We show that the angle of intersection between two non-coincident but parallel en-echelon fractures depends strongly on the fracture height-to-spacing ratio, with intersection angles being asymptotic for "tall" fractures (large height-to-spacing ratios) and nearly orthogonal for "short" fractures. Stress perturbation around normal faults is three-dimensionally heterogeneous. That perturbation can result in joint development at the vicinity of normal faults. We examine the geometrical relationship between genetically related normal faults and joints in various geologic environments by considering a published case study of fault-related joints in the Arches National Park region, Utah. The results show that joint orientation is dependent on vertical position with respect to the normal fault, the spacing-to-height ratio of sub-parallel normal faults, and Poisson's ratio of the media. Our calculations represent a more physically reasonable match to measured field data than previously published, and we also identify a new mechanism to explain the driving stress for opening mode fracture propagation upon burial of quasi-elastic rocks. Hydraulic fractures may not necessarily start perpendicular to the minimum horizontal remote stress. We use the developed fracture propagation model to explain abnormality in the geometry of fracturing from misaligned horizontal wellbores. Results show that the misalignment causes non-planar lateral propagation and restriction in fracture height and fracture width in wellbore part. / text
|
1176 |
Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirsMoinfar, Ali, 1984- 02 October 2013 (has links)
Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models.
We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media.
Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM.
Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements. / text
|
1177 |
Role of fluid elasticity and viscous instabilities in proppant transport in hydraulic fracturesMalhotra, Sahil 02 October 2013 (has links)
This dissertation presents an experimental investigation of fluid flow, proppant settling and horizontal proppant transport in hydraulic fractures. The work is divided into two major sections: investigation of proppant settling in polymer-free surfactant-based viscoelastic (VES) fluids and development of a new method of proppant injection, referred to as Alternate-Slug fracturing.
VES fluid systems have been used to eliminate polymer-based damage and to efficiently transport proppant into the fracture. Current models and correlations neglect the important influence of fracture walls and fluid elasticity on proppant settling. Experimental data is presented to show that elastic effects can increase or decrease the settling velocity of particles, even in the creeping flow regime. Experimental data shows that significant drag reduction occurs at low Weissenberg number, followed by a transition to drag enhancement at higher Weissenberg numbers. A new correlation is presented for the sphere settling velocity in unbounded viscoelastic fluids as a function of the fluid rheology and the proppant properties.
The wall factors for sphere settling velocities in viscoelastic fluids confined between solid parallel plates (fracture walls) are calculated from experimental measurements made on these fluids over a range of Weissenberg numbers. Results indicate that elasticity reduces the retardation effect of the confining walls and this reduction is more pronounced at higher ratios of the particle diameter to spacing between the walls. Shear thinning behavior of fluids is also observed to reduce the retardation effect of the confining walls. A new empirical correlation for wall factors for spheres settling in a viscoelastic fluid confined between two parallel walls is presented.
An experimental study on proppant placement using a new method of fracturing referred to as Alternate-Slug fracturing is presented. This method involves alternate injection of low viscosity and high viscosity fluids into the fracture, with proppant pumped in the low viscosity fluid. Experiments are conducted in Hele-Shaw cells to study the growth of viscous fingers over a wide range of viscosity ratios. Data is presented to show that the viscous finger velocities and mixing zone velocities increase with viscosity ratio up to viscosity ratios of about 350 and the trend is consistent with Koval’s theory. However, at higher viscosity ratios the mixing zone velocity values plateau signifying no further effect of viscosity contrast on the growth of fingers and mixing zone. The plateau in the velocities at high viscosity ratios is caused by an increase in the thickness of the displacing fluid and a reduction in the thin film of the displaced fluid on the walls of the Hele-Shaw cell.
Fluid elasticity is observed to retard the growth of fingers and leads to growth of multiple thin fingers as compared to a single thick dominant finger in less elastic fluids. Observations show the shielding effect is reduced by fluid elasticity. Elastic effects are observed to reduce the thickness of thin film of displaced fluid on the walls of Hele-Shaw cell. The dominant wave number for the growth of instabilities is observed to be higher in more elastic fluids. At the onset of instability, the interface breaks down into a greater number of fingers in more elastic fluids.
Experiments are performed in simulated fractures (slot cells) to show the proppant distribution using alternate-slug fracturing. Observations show alternate-slug fracturing ensures deeper placement of proppant through two primary mechanisms: (a) proppant transport in viscous fingers formed by the low viscosity fluid and (b) an increase in drag force in the polymer slug leading to better entrainment and displacement of any proppant banks that may have formed. The method offers advantages of lower polymer costs, lower pumping horsepower, smaller fracture widths, better control of fluid leak-off and less gel damage compared to conventional gel fracs. / text
|
1178 |
Measurement and control of complexity effects in branched microchannel flow systemsHart, Robert Andrew 13 November 2013 (has links)
Complex flow structures consisting of branching, multi-scale, hierarchically arranged flow paths can be a beneficial in certain applications by providing lower hydraulic and thermal resistances than conventional flow arrangements. In this study, an experimental approach was used to investigate the hydrodynamic and thermal effects of the complexity, or degree of branching, in microscale complex flow structures. The primary focus of this work was to develop new concepts to advance the current capabilities of complex flow structures through management of complexity. The effects of complexity were determined from experiments performed on a set of microfluidic test sections which were identical except for the complexity of the underlying microchannel configuration. Comparison of the relative hydrodynamic and thermal performance indicates that complexity has a strong effect on both the pressure drop and heat transfer. When the pumping power is taken into account, the results suggest that higher complexity arrangements improve the overall thermal-hydraulic performance. This conclusion was confirmed by the trends observed in the coefficient of performance, a measure of the device thermal efficiency. To address the limitations of conventional fixed-complexity designs, the concept of a variable-complexity flow structure is developed. With a variable-complexity design, the configuration of a branched flow structure can be dynamically controlled to improve performance as operational conditions vary. This concept was successfully demonstrated by developing and testing an active variable-complexity microfluidic device in which pneumatically controlled microvalves were used to create different flow channel configurations. The variable-complexity concept was further refined by developing a microfluidic device with a passive variable-complexity design in which the flow channel configuration changed autonomously based on local temperatures. By using microvalves containing a temperature sensitive polymer, the flow configuration of the device was made thermally adaptive. Experiments were performed to characterize the behavior of the polymer microvalves and the overall device performance. The results showed that the device was capable of tracking changes in external heat sources by adapting and reconfiguring its internal flow structure. The experiments also showed how this variable-complexity design can reduce the pumping power expenditure by automatically directing flow only to areas where it is required. / text
|
1179 |
Numerical modeling of complex hydraulic fracture development in unconventional reservoirsWu, Kan 15 January 2015 (has links)
Successful creations of multiple hydraulic fractures in horizontal wells are critical for economic development of unconventional reservoirs. The recent advances in diagnostic techniques suggest that multi-fracturing stimulation in unconventional reservoirs has often caused complex fracture geometry. The most important factors that might be responsible for the fracture complexity are fracture interaction and the intersection of the hydraulic and natural fracture. The complexity of fracture geometry results in significant uncertainty in fracturing treatment designs and production optimization. Modeling complex fracture propagation can provide a vital link between fracture geometry and stimulation treatments and play a significant role in economically developing unconventional reservoirs. In this research, a novel fracture propagation model was developed to simulate complex hydraulic fracture propagation in unconventional reservoirs. The model coupled rock deformation with fluid flow in the fractures and the horizontal wellbore. A Simplified Three Dimensional Displacement Discontinuity Method (S3D DDM) was proposed to describe rock deformation, calculating fracture opening and shearing as well as fracture interaction. This simplified 3D method is much more accurate than faster pseudo-3D methods for describing multiple fracture propagation but requires significantly less computational effort than fully three-dimensional methods. The mechanical interaction can enhance opening or induce closing of certain crack elements or non-planar propagation. Fluid flow in the fracture and the associated pressure drop were based on the lubrication theory. Fluid flow in the horizontal wellbore was treated as an electrical circuit network to compute the partition of flow rate between multiple fractures and maintain pressure compatibility between the horizontal wellbore and multiple fractures. Iteratively and fully coupled procedures were employed to couple rock deformation and fluid flow by the Newton-Raphson method and the Picard iteration method. The numerical model was applied to understand physical mechanisms of complex fracture geometry and offer insights for operators to design fracturing treatments and optimize the production. Modeling results suggested that non-planar fracture geometry could be generated by an initial fracture with an angle deviating from the direction of the maximum horizontal stress, or by multiple fracture propagation in closed spacing. Stress shadow effects are induced by opening fractures and affect multiple fracture propagation. For closely spaced multiple fractures growing simultaneously, width of the interior fractures are usually significantly restricted, and length of the exterior fractures are much longer than that of the interior fractures. The exterior fractures receive most of fluid and dominate propagation, resulting in immature development of the interior fractures. Natural fractures could further complicate fracture geometry. When a hydraulic fracture encounters a natural fracture and propagates along the pre-existing path of the natural fracture, fracture width on the natural fracture segment will be restricted and injection pressure will increase, as a result of stress shadow effects from hydraulic fracture segments and additional closing stresses from in-situ stress field. When multiple fractures propagate in naturally fracture reservoirs, complex fracture networks could be induced, which are affected by perforation cluster spacing, differential stress and natural fracture patterns. Combination of our numerical model and diagnostic methods (e.g. Microseismicity, DTS and DAS) is an effective approach to accurately characterize the complex fracture geometry. Furthermore, the physics-based complex fracture geometry provided by our model can be imported into reservoir simulation models for production analysis. / text
|
1180 |
Blindfolding the public : examining the hydraulic pattern hypothesis of media priming effectsYoo, Sung Woo 10 February 2015 (has links)
In this dissertation was examined the hydraulic pattern of media-priming effects by looking into Granger causality (a statistical test to determine if one time series is useful in forecasting another) between media coverage and the importance of issues people perceive. The hydraulic pattern hypothesis, an argument that increase in the importance of an issue is accompanied by decrease in a similar amount of importance, is embedded in most media-effect theories but has rarely been tested. To test the causality with media coverage, time series of six issues and six candidate variables were created. This research is distinct from previous studies of priming in that it tests aggregate-level influence of media coverage on popular evaluation of political-campaign candidate in a long-term setting. In the findings, media coverage of issues induced changes in the Granger-caused issue-weight of the issue that it covered, confirming the main effects of priming. The hydraulic pattern was also confirmed. Active media coverage of an issue, induced Granger-caused changes in five other issue-weights. It was found that it takes 7–8 days after the media coverage to establish a causal relationship of priming effects. vii In another finding, the result showed that the time-lag of the hydraulic pattern preceded the main priming effects. As regards the debated relationship of priming effects with political knowledge, this research found that high knowledge groups are more susceptible to the main priming effects. However, the impact of political knowledge on the hydraulic pattern was the opposite. This means that less knowledgeable people may be more vulnerable; that is, they are more likely to lose sight of other issues when the media primes a certain issue. In the test of attribute priming, the causality of the hydraulic pattern was also established to a lesser degree. Especially, personality-related candidate attributes like trustworthiness were robust regarding the hydraulic-pattern effects. In all of these analyses, the measurement of optimal time-lag was utilized instead of the durability concept used in previous studies. With this study design and new measurements, this research contributes to the literature by providing new insight into the theoretical conundrums related to priming theory. One of such insight is that the priming effects that matter at the poll, are relatively slow and deliberative processes, and are differentiated from the temperamental daily effects of news. / text
|
Page generated in 0.0478 seconds