• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 5
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fenômeno de transição espacial do escoamento óleo pesado-água no padrão estratificado / Phenomenon of spatial transition in stratified heavy oil-water flow pattern

Marcelo Souza de Castro 27 June 2013 (has links)
O escoamento estratificado óleo-água é comum na indústria de petróleo, em particular em poços direcionais e oleodutos. Estudos recentes mostram que o fenômeno de transição de padrões de escoamento de fases separadas pode estar relacionado à estrutura ondulatória da interface do escoamento (problema de estabilidade hidrodinâmica). A transição do padrão estratificado ao padrão estratificado com mistura na interface foi estudada por diversos autores sendo que a física envolvida está clara, e o fenômeno ocorre pelo arrancamento de gotículas da crista da onda interfacial. Técnicas baseadas na análise temporal da estabilidade hidrodinâmica para a proposição de critérios de transição são comumente encontradas na literatura. Entretanto, para certas condições de escoamento, foi observado que o padrão de escoamento estratificado muda ao longo da tubulação. O escoamento adentra a tubulação como estratificado ondulado e alguns diâmetros após a entrada ocorre a transição para o padrão bolhas alongadas. Foi também observado que o ponto no espaço em que o fenômeno ocorre varia com a elevação ou decréscimo das velocidades superficiais das fases. Aparentemente, tal fenômeno ocorre devido a efeitos de tensão interfacial e ângulo de contato. O modelo de dois fluidos unidimensional, a teoria da estabilidade hidrodinâmica linear (análise espacial) e dados experimentais das propriedades da onda interfacial são utilizados para estudo do escoamento, levando a um novo critério de transição em função da velocidade da onda interfacial. O fenômeno de transição espacial do padrão estratificado ocorre fora da região delimitada como estável pela teoria linear; assim, efeitos não lineares são predominantes e uma teoria que leve em consideração tais efeitos se faz necessária. O método das características foi utilizado e buscou-se prever o ponto no espaço em que a transição ocorre. O estudo experimental foi realizado em montagem experimental do Laboratório de Engenharia Térmica e Fluidos; dados experimentais permitiram a obtenção de uma nova carta de fluxo óleo-água e propriedades da onda interfacial. As comparações entre dados e previsões dos modelos são encorajadoras. / The stratified oil-water flow pattern is of common occurrence in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The transition from stratified flow to stratified with mixture at the interface has been studied by several authors and the physics behind the phenomenon has been already explained, basically by the tearing of droplets from the interfacial wave crest. Techniques based on a temporal analysis of the hydrodynamic stability for the proposition of transition criteria are often found in the literature. However, at certain inlet flow conditions, it was observed that the flow pattern changes along the test line. The flow enters the test line as wavy stratified flow and then, several diameters from the pipe inlet, the transition to elongated-bubbles flow occurs. It was also observed that the location where the transition occurs also changes depending on the phases superficial velocities. It seems that this phenomenon occurs due to interfacial tension and contact angle effects. The one-dimensional two-fluid model, linear stability theory (spatial approach) and experimental data of the interfacial wave properties are used to study the flow and a new transition criterion based on the wave celerity is proposed. The stratified-flow spatial transition occurred outside the region delimitated as stable by the linear theory; so nonlinear effects are prominent. The method of characteristics was used as an attempt to predict the point in space at which the transition occurs. The experimental work was done at the experimental facility of the Thermal-fluids Engineering Laboratory; experimental data allowed a new oil-water flow map and interfacial wave properties were acquired. The agreement between data and prediction is encouraging.
22

[en] COUETTE FLOW OVER A FLEXIBLE WALL STABILITY / [pt] ESTABILIDADE DE ESCOAMENTO DE COUETTE SOBRE UMA PAREDE FLEXÍVEL

FABIO ROCHA HOELZ 16 March 2021 (has links)
[pt] Escoamentos de fluidos sobre paredes flexíveis se fazem presentes em diversos processos biológicos e industriais. A flexibilidade do sólido permite a propagação de ondas na interface, podendo levar o sistema a se tornar instável mesmo a baixos valores do número de Reynolds. Esta perda de estabilidade provoca uma alteração nas características hidrodinâmicas e na transferência de calor do processo. Os trabalhos disponíveis na literatura se concentram em torno de análise de estabilidade linear e experimentos de determinação de parâmetros críticos. Entretanto estas metodologias não são capazes de descrever o comportamento do sistema após sua desestabilização. Neste trabalho, o regime instável de um escoamento de Couette de um fluido Newtoniano sobre um sólido incompressível e impermeável de MooneyRivlin é estudado numericamente através da solução acoplada das equações de conservação de quantidade de movimento linear transiente de cada meio. O número de Reynolds foi escolhido pequeno o suficiente para afastar a possibilidade de que mecanismos inerciais se façam presentes. Diferentes razões de espessura líquido-sólido flexível foram utilizadas para se determinar os efeitos desta grandeza sobre o processo. O sistema de equações diferenciais foram integradas no espaço pelo método de Galerkinjelementos finitos, e no tempo por diferenças finitas. A necessidade de se utilizar passos de tempo variáveis exigiu o desenvolvimento de uma fórmula específica para a aproximação da derivada segunda presente no termo transiente do sólido. / [en] Fluid flow over flexible wall are present in several biological and industrial processes. The flexibility of the solid body permits the waves propagation along the interface, leading the system to become unstable even at low value of Reynolds number. This loss of stability induce some changes on the hydrodynamic characteristics and on the heat transfer of the process. Works available on literature are concentrated around linear stability analysis and experiments of determining critical parameters. Nevertheless these methodologies are not able of describing the system behavior after the desestabilization. In this work, the unstable regime of a Newtonian fluid Couette flow over an incompressible and impermeable Mooney-Rivlin solid is numerically studied by solving the coupled fluid and solid momentum equation. The Reynolds number has been chosen small enough to avoid the presence of inertial mechanisms. Different liquid-flexible solid thickness ratio were used to determine the effect of this parameter on the problem. The system of differential equations were integrated by Galerki s/finite elements method on space, and by finite differences on time. The necessity of using variables changeables time steps demanded the development of a specific equation to approximates the second material derivative present on the unsteady solid term.
23

Global stability analysis of three-dimensional boundary layer flows

Brynjell-Rahkola, Mattias January 2015 (has links)
This thesis considers the stability and transition of incompressible boundary layers. In particular, the Falkner–Skan–Cooke boundary layer subject to a cylindrical surface roughness, and the Blasius boundary layer with applied localized suction are investigated. These flows are of great importance within the aviation industry, feature complex transition scenarios, and are strongly three-dimensional in nature. Consequently, no assumptions regarding homogeneity in any of the spatial directions are possible, and the stability of the flow is governed by an extensive three-dimensional eigenvalue problem. The stability of these flows is addressed by high-order direct numerical simulations using the spectral element method, in combination with a Krylov subspace projection method. Such techniques target the long-term behavior of the flow and can provide lower limits beyond which transition is unavoidable. The origin of the instabilities, as well as the mechanisms leading to transition in the aforementioned cases are studied and the findings are reported. Additionally, a novel method for computing the optimal forcing of a dynamical system is developed. This type of analysis provides valuable information about the frequencies and structures that cause the largest energy amplification in the system. The method is based on the inverse power method, and is discussed in the context of the one-dimensional Ginzburg–Landau equation and a two-dimensional flow case governed by the Navier–Stokes equations. / <p>QC 20151015</p>
24

Studies on instability and optimal forcing of incompressible flows

Brynjell-Rahkola, Mattias January 2017 (has links)
This thesis considers the hydrodynamic instability and optimal forcing of a number of incompressible flow cases. In the first part, the instabilities of three problems that are of great interest in energy and aerospace applications are studied, namely a Blasius boundary layer subject to localized wall-suction, a Falkner–Skan–Cooke boundary layer with a localized surface roughness, and a pair of helical vortices. The two boundary layer flows are studied through spectral element simulations and eigenvalue computations, which enable their long-term behavior as well as the mechanisms causing transition to be determined. The emergence of transition in these cases is found to originate from a linear flow instability, but whereas the onset of this instability in the Blasius flow can be associated with a localized region in the vicinity of the suction orifice, the instability in the Falkner–Skan–Cooke flow involves the entire flow field. Due to this difference, the results of the eigenvalue analysis in the former case are found to be robust with respect to numerical parameters and domain size, whereas the results in the latter case exhibit an extreme sensitivity that prevents domain independent critical parameters from being determined. The instability of the two helices is primarily addressed through experiments and analytic theory. It is shown that the well known pairing instability of neighboring vortex filaments is responsible for transition, and careful measurements enable growth rates of the instabilities to be obtained that are in close agreement with theoretical predictions. Using the experimental baseflow data, a successful attempt is subsequently also made to reproduce this experiment numerically. In the second part of the thesis, a novel method for computing the optimal forcing of a dynamical system is developed. The method is based on an application of the inverse power method preconditioned by the Laplace preconditioner to the direct and adjoint resolvent operators. The method is analyzed for the Ginzburg–Landau equation and afterwards the Navier–Stokes equations, where it is implemented in the spectral element method and validated on the two-dimensional lid-driven cavity flow and the flow around a cylinder. / <p>QC 20171124</p>

Page generated in 0.0809 seconds