• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 758
  • 116
  • 115
  • 93
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 15
  • 11
  • 9
  • 8
  • 6
  • Tagged with
  • 1441
  • 212
  • 189
  • 165
  • 144
  • 130
  • 126
  • 111
  • 108
  • 101
  • 99
  • 96
  • 91
  • 91
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
831

The dynamics and phase behavior of suspensions of stimuli-responsive colloids

Cho, Jae Kyu 29 July 2009 (has links)
The studies of the dynamics, phase behavior, interparticle interactions, and hydrodynamics of stimuli-responsive pNIPAm-co-AAc microgels were described in this thesis. Due to their responsiveness to external stimuli, these colloidal particles serve as excellent model systems to probe the relationship between colloidal interactions and phase behavior. As a first step, we established our core experimental methodology, by demonstrating that particle tracking video microscopy is an effective technique to quantify various parameters in colloidal systems. Then we used the technique in combination with a microfluidic device that provides in situ control over sample pH to probe the phase behavior of pNIPAm-co-AAc microgel suspensions. In essence, the experimental set-up enables changes in effective particle volume fractions by changing pH, which can be used to construct the phase diagram. In order to explain the unique features of the microgel phase diagram, we measured the underlying pairwise interparticle potential of pNIPAm-co-AAc microgels directly in quasi-2D suspension and proved that the interactions are pH dependent and can range from weakly attractive to soft repulsive. Finally, the hindered Brownian diffusion due of colloidal particles confined by hard walls was investigated systematically and striking differences between hard sphere and soft sphere were found, with soft pNIPAm-co-AAc microgels showing surprising mobility even under strong confinement.
832

A hydrodynamic characterization of tidal ecosystems with respect to predation

Berry, William Alexander 24 August 2009 (has links)
This study seeks to identify naturally occurring differences in the turbulent environment at a variety of field sites near the Skidaway Institute of Oceanography, in Wassaw Sound and surrounding bodies of water. The sites have previously been used to study predator-prey interactions. Velocity time records were recorded using acoustic Doppler velocimetry (ADV) probes at six sites on four days, with a total of 14 data sets. Differential estimate phase filtering was employed to identify erroneous velocity measurements. Less than 3% of the total samples were identified for any given data set with the exception of three sets that contained nonphysical banded bursts. Set mean velocity statistics were largely unaffected by phase filtration, while turbulent kinetic energy (TKE) was reduced in magnitude. Because the sites were exposed to waves, wave contributions to TKE and Reynolds shear stress were computed. Power spectral densities (PSDs) were computed for each velocity burst, and the contributions from wave-related and turbulent fluctuations were isolated. Wave components of TKE and Reynolds shear stress were computed. Wave contributions to turbulent characteristics for most sets were between 10-20% of the total value. Wave contributions to TKE were consistent but wave contributions to Reynolds shear stresses were irregular. Burst-average velocity statistics, TKE, Reynolds shear stress, and turbulence intensity (TI) were computed for each set. Large variability in turbulent characteristics was observed both temporally and spatially. Tidal influences were apparent as turbulent characteristics often reached absolute maximum values during the incoming or outgoing tides. No consistent trends were observed in relationships between the sites. The findings of the study emphasize the importance of applying data filtration to raw ADV data, suggest an order of magnitude of wave contributions in a particular tidal ecosystem, and demonstrate the inherent variability of turbulent characteristics. The study also illustrates the importance of considering multiple turbulence parameters for a give site, due to the lack of observed relationships between TKE, TI, and Reynolds shear stress. Further work is needed to determine if other parameters that are relevant from a flow characterization standpoint are also important ecologically.
833

The effect of particle deformation on the rheology and microstructure of noncolloidal suspensions

Clausen, Jonathan Ryan 08 July 2010 (has links)
In order to study suspensions of deformable particles, a hybrid numerical technique was developed that combined a lattice-Boltzmann (LB) fluid solver with a finite element (FE) solid-phase solver. The LB method accurately recovered Navier-Stokes hydrodynamics, while the linear FE method accurately modeled deformation of fluid-filled elastic capsules for moderate levels of deformation. The LB/FE technique was extended using the Message Passing Interface (MPI) to allow scalable simulations on leading-class distributed memory supercomputers. An extensive series of validations were conducted using model problems, and the LB/FE method was found to accurately capture proper capsule dynamics and fluid hydrodynamics. The dilute-limit rheology was studied, and the individual normal stresses were accurately measured. An extension to the analytical theory for viscoelastic spheres [R. Roscoe. J. Fluid Mech., 28(02):273-93, 1967] was proposed that included the isotropic pressure disturbance. Single-body deformation was found to have a small negative (tensile) effect on the particle pressure. Next, the rheology and microstructure of dense suspensions of elastic capsules were probed in detail. As elastic deformation was introduced to the capsules, the rheology exhibited rapid changes. Moderate amounts of shear thinning were observed, and the first normal stress difference showed a rapid increase from a negative value for the rigid case, to a positive value for moderate levels of deformation. The particle pressure also demonstrated a decrease in compressive stresses as deformation increased. The corresponding changes in microstructure were quantified. Changes in particle self-diffusivity were also noted.
834

The reciprocal relationship between hydrodynamics and bivalves

Delavan, Sarah Kelly 18 May 2010 (has links)
The focus of this study was to determine the effect of clam presence and behavior on the crossflow of the ambient horizontal flow and the effect of ambient horizontal flow characteristics influence the clam feeding behavior. Hence, there is a reciprocal relationship between organisms and the physical environment, and this study ultimately addressed the role of hydrodynamics in the predator-prey relationship between bivalve clams, Mercenaria mercenaria, and their predators, blue crabs and whelks. The study concludes that clams alter the chemical odorant source characteristics and control the transmission of the chemical signal through altering the crossflow. The first part of the study is a field experiment designed to quantify the effect of the presence and behavior of clams on the crossflow of the horizontal crossflow. The second part of this study is a two-part laboratory experiment designed to isolate the influence of environmental factors on clam behavior. One experiment quantifies the unsteadiness of the clam excurrent jet velocity time record according to environmental cues such as the horizontal crossflow velocity, the density of the clam patch, and the size of the clam. The second laboratory experiment quantifies the unsteadiness of the jet velocity values according to the presence of predator cues in the upstream flow. Clams are found, using an ADV system in the field, to alter the vertical distribution of velocity according to the sediment in which they are buried. Also, turbulence characteristics, such as Turbulent Kinetic Energy and Reynolds shear stress, are altered in the presence of clams according to the ambient horizontal crossflow velocity and treatment site. The laboratory flume PIV system captured vector plots for two-dimensional planes that bisect the clam excurrent siphons and clam jet velocity time records were extracted. A fractal analysis and a lacunarity analysis of the jet velocity time records found that clams alter their jet excurrent velocity unsteadiness according to the horizontal crossflow velocity. This behavioral change may contribute to the differences in the turbulence characteristics in the field experiment. Another result from the laboratory experiments is that the effect of clam patch density on the feeding activity was dependent on the size of the organism. This size/density dependent relationship suggests that predation by blue crabs dominates the system since larger clams are no longer susceptible to blue crab predation, whereas clams of all sizes are susceptible to whelk predation. Finally, clams increase the randomness of their excurrent jet velocity values when predator cues are located in the upstream flume flow. This suggests that the presence of predators elicits clam behavior that promotes the mixing and dilution of their chemical metabolites.
835

Planktonic propulsion: the hydrodynamics, kinematics, and design of metachrony

Murphy, David W. 03 July 2012 (has links)
Locomotion is a key characteristic of almost all forms of life and is often accomplished, whether on land, in water, or in the air, by reciprocal motion of two or more appendages. Among the zooplankton, many species propel themselves by rhythmically beating multiple pairs of closely spaced leg-like appendages in a back-to-front (metachronal) pattern. The focus of this study is to understand the mechanical design, kinematic operation, and hydrodynamic result of metachrony in the zooplankton. In the first part of this study, Antarctic krill (Euphausia superba) are investigated as an ecologically important model species that metachronally beats its swimming legs (pleopods) to perform drag-based propulsion. Based on high speed videos of freely swimming Antarctic krill, hovering, fast forward swimming, and upside down swimming are identified as three distinct swimming modes with significantly different stroke amplitudes and beat frequencies. When transitioning between hovering and fast forward swimming, Antarctic krill first increase beat amplitude and secondarily increase beat frequency. In considering the design components that contribute to metachrony being a successful swimming technique, a comparison among many different species shows that the ratio between the appendage separation distance and appendage length is limited to a narrow range of values (i.e. 0.2 - 0.65). In the second part of this study, metachrony is examined at smaller length and time scales by examining the impulsive escape jump of a calanoid copepod (Calanus finmarchicus). The wake generated by the copepod's metachronally beating swimming legs is experimentally measured using a novel (and newly developed) tomographic particle image velocimetry (PIV) system capable of making volumetric 3D velocity measurements with high temporal and spatial resolution using IR illumination. The flow generated by the escaping copepod consisted of a stronger posterior vortex ring generated by the metachronally stroking swimming legs and a weaker one generated anteriorly around the body by the impulsive start of the escape, both of which decayed over time. The experiments also revealed azimuthal asymmetry in the vortices caused by body yawing and the action of the swimming legs, flow features not considered in previous axisymmetric computational and theoretical models of copepod jumps. While not accounting for this asymmetry, an impulsive stresslet is nonetheless useful in modeling the flow created by the escaping copepod and represents the flow more accurately than an impulsive Stokeslet. In the final part of this study, the flow associated with metachronal hovering in Antarctic krill is experimentally and theoretically investigated in regards to the energy requirements of the pelagic lifestyle. Volumetric flow measurements of a hovering Antarctic krill show that each stroking pleopod drags flow behind it such that a downward stream develops medially. The lateral exopodites induce tip vortices which add to the lift force on each appendage. Furthermore, the flow beneath the hovering krill develops into a pulsed jet with a Strouhal number in the 'high-efficiency zone' of 0.2 < St < 0.4. Actuator disk theory is used to make theoretical estimates of the induced power necessary to hover, the results of which match induced power values calculated from measured flow gradients contributing to viscous energy dissipation.
836

Computational studies of fully submerged bodies, propulsors, and body/propulsor interactions

Cash, Allison Nicole. January 2001 (has links)
Thesis (M.S.)--Mississippi State University. Department of Aerospace Engineering. / Title from title screen. Includes bibliographical references.
837

Estimation of wave-induced ship hull bending moment from ship motion measurements /

Xu, Jinsong, January 2000 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2001. / Bibliography: leaves 117-120.
838

Particle simulation of MEMS,NEMS components and processes - theory, software design and applications

Kauzlarić, David January 2009 (has links)
Zugl.: Freiburg (Breisgau), Univ., Diss., 2009
839

Steady-state spherical accretion using smoothed particle hydrodynamics

Baumann, Mark Chapple 06 February 2012 (has links)
Due to its adaptable nature in a broad range of problem domains, Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique for computing solutions in astrophysics. This dissertation discusses the SPH technique and assesses its capabilities for reproducing steady-state spherically-symmetric accretion flow. The accretion scenario is of great interest for its applicability in a diverse array of astrophysical phenomena and, under certain assumptions, it also provides an accepted analytical solution against which the numerical method can be validated. After deriving the necessary equations from astrophysical fluid dynamics, giving a detailed review of solving the steady-state spherical accretion problem, and developing the SPH methodology, this work suggests solutions to the issues that must be overcome in order to successfully employ the SPH methodology to reproduce steady-state spherical accretion flow. Several techniques for setting initial data are addressed, resolution requirements are illustrated, inner and outer boundary conditions are discussed, and artificial dissipation parameters and methodologies are explored. / text
840

Star formation in the assembly of the first galaxies

Johnson, Jarrett Lawrence 10 August 2012 (has links)
The character of the first galaxies at redshifts z [greater-than or equal to] 10 strongly depends on the star formation which takes place during their assembly. Conducting cosmological hydrodynamics simulations, we study how the radiative output and chemical enrichment from the first stars impacts the properties of the first galaxies. We find that the radiative feedback from the first stars suppresses the star formation rate at redshifts z [greater-than or equal to] 15 by a factor of only a few. In turn, this suggests that a large fraction of the first galaxies may form from gas which has already been enriched with the first heavy elements ejected by primordial supernovae. In order to characterize the properties of primordial dwarf galaxies, we carry out radiation hydrodynamics simulations which allow to determine how the luminosities in hydrogen and helium emission lines depend on the initial mass function of the stars in the galaxy. As well, we show that the chemical abundance patterns observed in metal-poor Galactic halo stars contain the signature of the first supernovae, and we use this data to indirectly probe the properties of the first stars. / text

Page generated in 0.0972 seconds