• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 58
  • 28
  • 18
  • 17
  • 16
  • 14
  • 13
  • 12
  • 10
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analysis of Hydraulic Tube Expansion Forming in a Rectangular Cross-sectional Die

Chen, Wen-Chih 29 July 2002 (has links)
The objective of this study uses the plasticity theory of the slab method and the numerical analysis of the finite difference method to construct a mathematical model. And a computer program will be developed to evaluate the quality of the tubes formed by hydraulic expansion. Considering sticking and sliding modes, a mathematical model is proposed to predict the forming pressure needed to hydroform a circular tube into square and rectangular cross-sections and the thickness distribution of the product. In the sticking friction mode, it is assumed that the elements after contact with the die do not move or slide. Whereas, in the sliding friction mode, the element in contact with the die will continue to deform with the stress variation in the subsequent forming process. A series of FE simulations on tube expansion by a commercial FE code¡§DEFORM¡¨have been carried out. In addition, the experiment employing aluminum alloy AA 6063 that has been annealed to proceed the hydraulic expansion experiment. The comparisons between analysis and the result of forming pressure, corner radius and thickness distribution by experiment are verified the validity of this mathematical model. The effects of the forming parameters such as the die geometry, the material property of the tube, friction coefficient between the die and tube, etc., upon the expansion results, such as the forming pressure, corner radius, the tube contact distance with the die, thickness distribution after expansion, etc., are systematically discussed.
32

Assessment Of Sheet Metal Forming Processes By Numerical Experiments

Onder, Erkan Ismail 01 June 2005 (has links) (PDF)
iv Sheet metal forming technologies are challenged especially by the improvements in the automotive industry in the last decades. To fulfill the customer expectations, safety requirements and market competitions, new production technologies have been implemented. This study focuses on the assessment of conventional and new sheet metal forming technologies by performing a systematic analysis. A geometry spectrum consisting of six different circular, elliptic, quad cross-sections are selected for the assessment of conventional deep drawing, hydro-mechanical deep drawing and high-pressure sheet metal forming. Within each cross-section, three different equivalent drawing ratios are used as a variant. More than 200 numerical experiments are performed to predict the forming limits of three competing processes. St14 stainless steel is used as the material throughout the assessment study. The deformation behavior is described by an elasto-plastic material model and all numerical simulations are carried out by using dynamic-explicit commercial The process validation is done by interpreting the strain results of numerical experiment. Therefore, the reliability of predictions in the assessment study highly depends on the quality of simulations. The precision of numerical experiments are verified by comparing to NUMISHEET benchmarks, analytical formulation, and experiments to increase the assets of the assessment study. The analyses revealed that depending on the workpiece geometry and dimensional properties certain processes are more preferable for obtaining satisfactory products. The process limits for each process are established based on the analyzed crosssections of the spectrum. This data is expected to be useful for predicting the formability limits and for selecting the appropriate production process according to a given workpiece geometry.Dynamic-explicit FEM, Deep drawing, Hydroforming, Forming limits, Process evaluation
33

Caractérisation mécanique des matériaux constitutifs des tubes roulés-soudés pour leur mise en forme par hydroformage dans un contexte industriel. / Mechanical characterization of rolled-welded tubes materials for tube hydroforming in an industrial setting

Vitu, Ludovic 11 December 2017 (has links)
L’hydroformage de tube nécessite l’emploi d’outillage coûteux et la phase de mise au point utilise intensivement la simulation par éléments finis. Pour ces simulations, il est nécessaire de disposer de données matériaux adaptées dans le domaine plastique. Le comportement des matériaux utilisés en mise en forme dépend du mode de sollicitation. Ainsi, plusieurs essais de caractérisation tels que l’essai de traction et les essais de gonflement de flan et de tube sont traités dans ce travail.On s’intègre dans une démarche pragmatique afin d’offrir des méthodes simples pour une mise en œuvre dans un contexte industriel en limitant le nombre d’essai, une méthode expérimentale de caractérisation simple et une méthode d’analyse des résultats expérimentaux efficace. De plus, on se limite à des modèles matériaux disponibles dans tout type de code de calcul comme la loi d’écrouissage de Swift et le critère de plasticité de Hill 1948.Après une introduction des différents types d’hydroformage et des notions de bases du comportement plastique des matériaux, la mise en œuvre des essais est présentée. On retiendra qu’il existe plusieurs façons de post-traiter les résultats expérimentaux. La méthode classique a été choisie pour l’essai de traction, celle préconisée par Koç et al. est utilisée pour le gonflement de flan et enfin la méthode de Boudeau et Malécot a été adoptée pour le gonflement de tube.À partir des essais effectués sur un acier austénitique inoxydable de type AISI 304, plusieurs courbes d’écrouissages distinctes ont été obtenues. Des simulations numériques ont été menées afin de confronter ces lois de comportement sur la prédiction des profils des flans et des tubes déformés ainsi que sur les distributions d’épaisseur de ceux-ci. Enfin, le matériau ayant été considéré isotrope jusqu’à présent, on s’attache à l’influence de l’anisotropie du matériau dans le cadre de la mise en forme par hydroformage. Pour cela un plan complet est mené.Mots-clés : hydroformage, caractérisation de matériaux, tube, simulation E.F., expérimentation / Tube hydroforming requires the employment of expensive tooling and its industrial development makes an intensive use of finite element simulations. For these simulations, we need plastic material data. The material behavior, in forming, depends on the loading mode. Thus, several characterization tests such as uniaxial tensile test, the bulging test on sheet and tube, are investigated in this work.The works are conducted in the context of a pragmatic approach. The goal is to offer simple methods for implementation in an industrial setting based on a limited number of tests, a simple experimental method and an efficient method for post-processing experimental results. In addition, we limit ourselves to classical material models, available in any FE code, such as the Swift’s hardening law and the Hill 1948 plastic criterion.After the introduction of the different kind of hydroforming and the fundamentals on the plastic behavior of materials, the experimental tests are presented. There are many ways for post-processing the experimental results of these advanced testing methods. The conventional method is chosen for post-processing the experimental results obtained with the tensile test ; for the sheet bulging test, the method recommended by Koç et al. is used and the model proposed by Boudeau and Malécot’s is adopted for tube bulging test.The different tests are carried out on an austenitic stainless steel AISI 304 and, distinct hardening curves are obtained. Numerical simulations of the tests and a tube hydroforming operation are performed with the different hardening law. The FE results are compared; the comparisons are led on the resulting bulged sheet or tube and on the thickness distribution. Finally, the influence of the initial anisotropy in tube hydroforming is studied through a full Design Of Experiences.Keywords: hydroforming, material characterization, tube, F.E. simulation, experiment
34

Uma contribuição à modelagem experimental e teórica do processo de conformação hidrostática de tubos de aço inoxidável AISI 316 L. / A contribution to the experimental and theoretical modeling of AISI 316 L stainless steel tube hidroforming.

Jorge Paiva Abrantes 25 May 2009 (has links)
O uso da simulação via método de elementos finitos (MEF) tem sido de suma importância para o desenvolvimento de processos de conformação hidrostática de tubos (CHT). Sua utilização reduz o método de tentativa e erro na definição do processo e grandes ganhos de produtividade são auferidos. Neste trabalho, a simulação via MEF em conjunto com o desenvolvimento analítico existente na literatura foi utilizada para o desenvolvimento de um método projeto de uma ferramenta simples para a CHT em matriz aberta e para uso em prensa comum. Obtida a ferramenta, foi possível a um baixo custo ser determinado experimentalmente os limites de conformação, o caminho de deformação e as dimensões do tubo expandido sendo possível compara-los com os resultados simulados via MEF. Esta comparação de resultados experimentais e simulados validou o procedimento de simulação e o método de projeto da ferramenta. Quanto ao carregamento, com a ferramenta obtida foram expandidos tubos por dois carregamentos distintos: só pressão e pressão e carga axial simultâneos permitindo assim comprovar a eficácia do segundo carregamento para a obtenção de razões de expansão maiores. Quanto às simulações, executadas em um programa comercial, elas foram desenvolvidas também para ambos os carregamentos. Ainda nestas simulações duas maneiras de aplicar-se a pressão foram avaliadas. Para a determinação dos limites de conformação do tubo fez-se uso da técnica denominada Circle Grid Analisys. Foi escolhido para estudo um tubo extrudado de aço inoxidável AISI 316 L submetido a tempera de solubilização. O método de projeto desenvolvido, numa primeira tentativa, utilizou como dado de entrada as propriedades do Aço AISI 316 L obtidos para chapas o que levou a diferenças entre os resultados simulados e experimentais. Assim foi necessário determinar-se as propriedades do aço AISI 316 L para a condição de tubo extrudado. Para a direção circunferencial utilizou-se o método de ensaios denominado Ring Hoop Tension Test, e para o sentido longitudinal o foi utilizado um ensaio de tração usual. Foram determinados inclusive os coeficientes de anisotropia. Com estes dados novas simulações, considerando a anisotropia do material, foram realizadas. Um aprimoramento do método de projeto foi realizado, sendo construída uma segunda versão da ferramenta para a CHT. Assim os novos resultados simulados foram obtidos e foram comparados com os resultados experimentais e os erros diminuíram significativamente. Como resultado final, para esta segunda versão de simulações, de projeto e ferramenta, os erros dos valores obtidos via simulação via MEF, no diâmetro e na espessura ficaram ao redor de 10%, assumindo o resultado experimental como padrão. Quanto ao limite de conformação os resultados simulados diferiram dos experimentais, porém o estado de deformação e os caminhos de deformação situaram-se no mesmo quadrante no plano das deformações (Curva CLC) para os dois carregamentos. Finalmente, quanto ao diâmetro externo do tubo para os dois carregamentos, o tubo em aço Inoxidável AISI 316 L atingiu diâmetros até 12,9% maiores para expansão por pressão e carga axial em relação àqueles expandidos somente por pressão, os quais foram assumidos como padrão. / The simulation using the finite elements method (FEM) has been of utmost importance for the tube hydroforming (THF) processes development. It reduces the try and error method in the process definition and great profits are gained. In this work, the FEM simulation together with the existing analytical THF theory in the literature was used to develop a process and a simple tool design for the THF, in open die arrangement and to be used in a common press. Gotten this tool, it was possible in a low cost, determine experimentally the forming limits, the strain paths and the evolution of geometry for a tube and then make it possible compares these experimental results with the simulated results obtained by FEM. This comparison of experimental and simulated results validated the simulation procedure and the tool design method. Relate the loads applied during the THF, two distinct load cases were possible: only pressure and simultaneous pressure and axial load, thus allowing proving the effectiveness of the second load case in obtain bigger expansion ratios. Relate to the simulations, they were run in commercial software and also the two load cases were simulated. Additionally in these simulations, two ways to apply the pressure had been evaluated. In the experiments, in the forming limits determination, the Circle Grid Analysis technique was used. A seamless stainless cold finished AISI 316 L solution annealed and quenched tube was chosen for evaluation. The tool design method, in a first attempt, uses the AISI 316 L steel properties obtained from sheets. Big differences between the FEM simulated and experimental results was gotten. Thus, it was necessary execute tensile tests in order to obtain the AISI 316 L steel properties for the seamless stainless cold finished, solution annealed condition. In such a way, a tensile tube test method called Ring Hoop Tension Test was used, to determined AISI 316 L steel properties in the transversal direction and a common tensile test was used for the longitudinal direction. Also, for both directions, anisotropy coefficients were also determined. With these new material properties set, new simulations including the anisotropy and a new improved tool design method were carried through, resulting in a new and improved tool version. Thus, new experiments were performed and compared with the new simulated results and the errors had diminished significantly. As final result, the errors in the diameter and in the thickness had been around of 10%, assuming the experimental result as standard. Relate the forming limits the results had differed, however the strain state and the strain path had been placed the same quadrant in a strain plane graphic (FLD diagram) for both load cases. Finally, relate to the tube expansion ratio, the tube external diameter increase 12,9% greater for tube expansion under pressure and axial load assuming the tube expansion under only pressure as standard.
35

Výroba dílce hydroformováním a její optimalizace / Manufacturing of a Component by Using Hydroforming Technology and Its Optimization

Harant, Martin January 2019 (has links)
The project deals with analysis and optimization of the geometry of the stamped part produced by the pillow hydroforming. The blank consists of two sheets of steel DC01, which is welded by laser beam. The forming process can cause excessive thinning and cracking of the part. By evaluation of mechanical tests is created material model, which is the basis for numerical simulation created in software PAM-STAMP. The outputs are analysis which provide information about critical points, failure pressure, limiting deformations and prediction of springback. Validity of the numerical simulation is verified by comparison with the experimentally obtained data. The comparative criterions are the failure pressure and the material thickness at various locations. Based on the results of the numerical simulation, the optimization of the geometry is created. The optimization uses different values of radius at the crack point.
36

Výroba dílce hydroformováním a její optimalizace / Part Manufacturing by Using Hydroforming and Its Optimization

Chrz, Jan January 2020 (has links)
The thesis presents an analysis and optimization of the manufacturing process of a part using the technology of parallel hydroforming. Two circular blanks made of DC01 steel with a thickness of 1 mm serve as a semi-manufactured part. In one of the blanks, the supply of the forming medium is constructed using Flowdrill technology. Subsequently, the two blanks are laser welded together and then formed. Numerical simulation using PAM-STAMP software was used to analyse the manufacturing process. This analysis provided information on wall thinning, deformation size, critical points on the product and springback. The numerical simulation was verified on the basis of comparison with an experiment. The criterion for verification was the course of the thickness of the part. Based on the results of the simulation, an optimization is performed in the thesis. It consists in determining the minimum required pressure of the forming medium for pressing the part, particularly for different distances between the two formed sheets.
37

Process Analysis and Design in Stamping and Sheet Hydroforming

Yadav, Ajay D. 20 August 2008 (has links)
No description available.
38

Analysis of Deformation and Failure in Aluminum Tube under Internal Pressure

shi, yihai 10 1900 (has links)
<p><strong>Abstract</strong></p> <p>The objective of this research is to develop an understanding of the mechanical behavior, failure and microstructure evolution of aluminum tubes under internal pressure loading, and to delineate the physical and mechanical origins of spatially-localized plastic deformation. Traditional approaches to the study of plastic instabilities, necking and failure have either been based on kinematic considerations, such as finite strain effects and geometric softening, or physics-based concepts. In this study, we develop a framework that combines both approaches to investigate the tube deformation and failure behavior at various loading conditions.</p> <p>A rate-dependent dislocation-based MTS model has been developed to study the tube hydro-forming process at high temperatures and at various strain rates. The development and application of the MTS model led to an advanced industrial application of PRF bottle forming, which has been fully investigated. This simulation shows a good agreement between experimental results and prediction. The model has been used extensively throughout the PRF bottle development, with several patent applications.</p> <p>The crystal plasticity based finite element model is selected to simulate surface roughening and localized necking in aluminum alloy tubes under internal pressure. The measured electron backscatter diffraction (EBSD) data are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The effects of the spatial grain orientation distribution, strain rate sensitivity, work hardening, and initial surface topography on surface roughening and necking are discussed. It is demonstrated that while localized necking is very sensitive to both the initial texture and its spatial orientation distribution, the initial surface topography has only a small influence on necking, but a large influence on surface roughness of the formed product.</p> <p>An elastic-viscoplastic based finite element model has been developed to study the necking behavior of tube expansion for rate dependent monolithic materials and laminated materials during dynamic loading. Numerical study shows that a high strain rate sensitivity can significantly delay the onset of necking for both monolithic and laminated sheets, and affect the multiple-neck formation in high speed dynamic loading. The model also shows that higher volume fractions of a clad layer with positive rate sensitivity material in laminated sheet could improve the sheet ductility as well.</p> <p>A commercial FE package, ABAQUS, is employed as a finite element method solver in this research work, and several user subroutines were developed to model various hydro-forming processes. Interfaces between the ABAQUS user subroutine UMAT and the ABAQUS main code are developed to allow further extension of the current method.</p> / Doctor of Philosophy (PhD)
39

Investigations on the Effect of Manufacturing on the Contact Resistance Behavior of Metallic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells

Turan, Cabir 04 May 2011 (has links)
Polymer electrolyte membrane fuel cells (PEMFCs) have emerged as a strong and promising candidate to replace internal combustion engines (ICE) due their high efficiency, high power density and near-zero hazardous emissions. However, their commercialization waits for solutions to bring about significant cost-reductions and significant durability for given power densities. Bipolar plate (BPP) with its multi-faceted functions is one of the essential components of the PEMFC stacks. Stainless steel alloys are considered promising materials of choice for bipolar plate (BPP) applications in polymer electrolyte membrane fuel cells (PEMFC) due to their relatively low cost and commercial availability in thin sheets. Stainless steel materials build a protective passive metal oxide layer on their surface against corrosion attack. This passive layer does not demonstrate good electrical conductivity and increases interfacial electric contact resistance (ICR) between BPP and gas diffusion layer GDL in PEMFC. Lower ICR values are desired to reduce parasitic power losses and increase current density in order to improve efficiency and power density of PEMFC. This study aimed to bring about a broader understanding of manufacturing effects on the BPP contact resistance. In first stage, BPP samples manufactured with stamping and hydroforming under different process conditions were tested for their electrical contact resistance characteristics to reveal the effect of manufacturing type and conditions. As a general conclusion, stamped BPPs showed higher contact conductivity than the hydroformed BPPs. Moreover, pressure in hydroforming and geometry had significant effects on the contact resistance behavior of BPPs. Short term corrosion exposure was found to decrease the contact resistance of bipolar plates. Results also indicated that contact resistance values of uncoated stainless steel BPPs are significantly higher than the respective target set by U.S. Department of Energy. Proper coating or surface treatments were found to be necessary to satisfy the requirements. In the second stage, physical vapor deposition technique was used to coat bipolar plates with CrN, TiN and ZrN coatings at 0.1, 0.5 and 1 μm coating thicknesses. Effects of different coatings and coating thickness parameters were studied as manufactured BPPs. Interfacial contact resistance tests indicated that CrN coating increased the contact resistance of the samples. 1 µm TiN coated samples showed the best performance in terms of low ICR; however, ICR increased dramatically after short term exposure to corrosion under PEMFC working conditions. ZrN coating also improved conductivity of the SS316L BPP samples. It was found that the effect of coating material and coating thickness was significant whereas the manufacturing method and BPP channel size slightly affected the ICR of the metallic BPP samples. Finally, effect of process sequence on coated BPPs was investigated. In terms of ICR, BPP samples which were coated prior to forming exhibited similar or even better performance than coated after forming samples. Thus, continuous coating of unformed stripes, then, applying forming process seemed to be favorable and worth further investigation in the quest of making cost effective BPPs for mass production of PEMFC.
40

Frottement en hydroformage de tube : caractérisation du frottement par le test d'expansion en matrice carrée / Friction tube hydroforming process : friction characterization by pure expansion test in a square section die

Abdelkefi, Abir 21 July 2016 (has links)
L’objectif de cette thèse est d’étudier la possibilité de caractériser le coefficient de frottement par un modèle analytique. Tout d’abord, le modèle analytique (Orban-Hu,2007) a été programmé à l’aide du logiciel « Matlab » puis validé par simulation numérique à l’aide du logiciel « Ls-Dyna ». Ensuite, on a réalisé des essais expérimentaux afin de caractériser les propriétés mécaniques du cuivre d’une part et étudier la mise en forme de tubes par hydroformage de tubes. Par suite, le coefficient de frottement a été caractérisé aussi bien par le modèle analytique que par le test classique ‘pion sur disque’. Les simulations numériques avec les coefficients de frottement obtenus ont permis de valider les résultats issus des essais expérimentaux pour une matrice carrée. Les mêmes résultats ont été également obtenus pour d’autres configurations géométriques (section rectangulaire, trapézoïdale et trapèze.) / The objective of this thesis is to study the possibility of characterizing the friction coefficient by an analytical model. First, the analytical model (Orban-Hu, 2007) has been programmed using "Matlab» software and has been validated by numerical simulation using "LS-Dyna" software. Then, experimental tests were carried out in order i) to characterize the mechanical properties of copper and ii) to study the tube hydroforming in a square section. As a result, the friction coefficient was characterized by the analytical model and the pin-on-disk test. Then, the numerical simulation with the friction coefficients obtained allowed to validate the experimental results for a square section. The same findings were obtained using other die geometries (rectangular, trapezoidal and trapezoid-sectional die).

Page generated in 0.0765 seconds