Spelling suggestions: "subject:"aydrogen absorption"" "subject:"aydrogen bsorption""
1 |
The Effect of an Externally Applied Magnetic Field on the Hydrogen Absorption Properties of LaNi5Bruce, David 10 1900 (has links)
Hydrogen fuel cell applications are set to ameliorate the world's energy woes, yet there still exists problems that need to be overcome in terms oftheir fuelling. While compressed storage, cryogenic storage, chemical storage, and adsorptive storage solutions exist, none meet the requirements that are needed to facilitate a replacement for the gasoline powered automobile.
Metal hydrides have been long studied as an alternative method for storing hydrogen safely and efficiently, with significant developments being made in advanced alloys. While this research is beneficial, it was theorized that an externally applied magnetic field might augment the storage properties of existing magnetically susceptible metal hydrides, without trial and error alloy development. Constant volume hydrogen absorption experiments were conducted using LaNi5 in order to test this theory. A known amount of LaNi5 was exposed to hydrogen, with the absorption equilibrium data collected over a period of 6 hours. An equal sample was then exposed to hydrogen with a 0.7 Tesla applied field applied to the sample. There was a distinct difference between the absorption curves of the two equal samples, with the sample under the influence of the magnetic field achieving an absorption of only 0.60% wt. in comparison with the unmodified sample which absorbed 0.88% wt. It was concluded that the presence of an externally applied magnetic field has a negative effect on the overall capacity of LaNis through the prevention of a shift in the inner lattice structure of LaNis that would otherwise permit an increased hydrogen capacity. This effect while negative in terms of overall storage capacity could have a possible benefit in terms of the desorption of the stored hydrogen, as the magnetic field could be used in lieu of an increase in temperature in order to drive the hydrogen from the fully filled structure. / Thesis / Master of Applied Science (MASc)
|
2 |
Neutral hydrogen absorption studies of active galaxiesBeswick, Robert J. January 2002 (has links)
Observations of neutral hydrogen (HI) absorption in the central regions of eight active galaxies are reported. These observations represent the most detailed studies of the neutral hydrogen component so far made of these sources, providing information on the HI gas distribution and kinematics on scales of 0.2 arcsec, corresponding to linear scales of tens of parsecs in the nearest galaxies observed. The sample of active galaxies presented here consists of the radio galaxy 3C293, two Seyfert galaxies NGC7674 and NGC7469, and five luminous infrared galaxies; NGC6240, IIIZw35, UGC2369, IR0335+1523 and Zw049.0. In each of these galaxies MERLIN has been used to provide the highest angular resolution observations of the neutral hydrogen content in these sources made to date. In addition to these high resolution HI studies the newly operational Giant Meterwavelength Radio Telescope has also been used to provide arcsecond resolution observations of the HI gas content in two of the MERLIN sources, 3C293 and NGC7674.Against the central few kiloparsecs of the radio galaxy 3C293 both the neutral hydrogen distribution and the radio continuum emission is imaged on linear scales of 150pc. The distribution and velocity structure of the HI gas against this radio galaxy is attributed to two gas structures. One of these gas structures is indicative of quiescent gas lying 10kpc from the galaxy centre and is physically associated with both ionised gas and dust lanes in the galaxy. The second HI velocity structure is situated within 600pc of the active galactic nucleus (AGN) and is observed to form a circumnuclear disc with a velocity gradient of 179km/s/arcsec. This circumnuclear disc of gas is shown to enclose a mass of M_dyn<600pc)leq3.9*10^9(sin^{-2}i) Msolar, where i represents the inclination of the disc. Extremely localised HI absorption is observed against the unresolved nuclei of the Seyfert galaxies NGC7674 and NGC7469. In the case of the Seyfert-2 galaxy NGC7674, it is shown that the HI is distributed within a 100pc of the AGN. Against the unresolved Seyfert-1 nucleus of NGC7469 the HI absorption is thought to either result from quiescent gas in the outer parts of this galaxy or from gas close to the nucleus. The HI absorption distribution in both of these sources is consistent with the absorption arising in circumnuclear dusty tori. Of the five luminous infrared galaxies observed, HI absorption is detected in four cases. The observations of IIIZw35, IR0335+015 and Zw49.0 all revealed unresolved 1.4GHz radio continuum structure against which HI absorption is detected. However, against the prototypical luminous infrared merger NGC6240 extensive radio continuum is resolved and imaged. It is concluded that the radio continuum structure of NGC6240 is consistent with the radio emission arising from both a starburst region and one or two AGN existing in the remnant nuclei of the merging galaxies. Extremely broad HI absorption is detected against the two dominant radio continuum components. The HI gas structure is consistent with a neutral gas disc forming between the two merging nuclei as they orbit around each other.
|
3 |
Behaviour of Mesoporous Silica (MCM-41) Supported Catalysts in Degradation ReactionsGuthrie, Colin Peter January 2012 (has links)
A research project was carried out to investigate several aspects of Mobil’s composition of matter #41 (MCM-41) pertaining to its potential application in water treatment technologies. The goal of the work was to lead to a recommendation of whether further work investigating this particular, potential application is warranted at the present time.
A dissolution experiment indicated that Pd/MCM-41 is more stable in contact with deionized water at 25±0.1 degrees Celsius than purely siliceous MCM-41. Stability increases with increasing mass percent loading of Pd in the Pd/MCM-41 material. The increased stability was attributed to a reduction in Pd/MCM-41 surface areas relative to the parent MCM-41 material. The reduction in surface area is likely the result of partial or complete blocking of the MCM-41 mesopores by Pd centres. Ni/MCM-41 was less stable in contact with deionized water than MCM-41 and Pd/MCM-41. Both Ni and Pd impregnated MCM-41 exhibited enhanced stability relative to purely siliceous MCM-41 in 0.01 M NaCl solution. The stability enhancement was more pronounced for Pd/MCM-41. A long term dissolution experiment showed that MCM-41 retained its characteristic hexagonal mesopore structure and high surface area after 1,174 days of contact with deionized water.
The ability of Pd/MCM-41 to absorb hydrogen was investigated in a series of experiments in pressure cells at 25±0.1 degrees Celsius and approximately 101.3 kPa. The Pd in Pd/MCM-41 was able to absorb 0.85±0.18 moles of hydrogen per mole of Pd present. This was a higher level of absorption than found in most other, published Pd-hydrogen investigations. It is proposed that enhanced uptake of hydrogen by Pd/MCM-41 may be the result of a higher proportion of surface and subsurface sites in the samples relative to other supported Pd materials.
Batch and column trichloroethylene (TCE) degradation experiments indicated that Pd/MCM-41 has substantial longevity while degrading at least 91% of inflow TCE concentrations in hydrogen-saturated deionized water over 5,036 pore volumes. The average inflow TCE concentration was 4.94E-2 ± 4.87E-3 mmol/l with maximum and minimum concentrations of 7.24E-2 mmol/l and 2.63E-2 mmol/l, respectively. The dominant breakdown product of TCE degradation in the presence of Pd/MCM-41 was ethane. Minimal concentrations of intermediate degradation products were detected, if at all. This result suggests that TCE completely degrades to ethane before desorbing from the Pd/MCM-41 surface. It was shown that Pd/MCM-41 was more effective and had better longevity at treating inflow TCE compared to a lower cost substitute, Pd/sand. Unlike Pd/MCM-41, Ni/MCM-41 did not induce degradation of TCE. Column experiments using Ni-Pd/MCM-41 materials indicated that while the material does induce degradation of TCE, the Pd cannot be substituted for Ni on a 1:1 basis while still obtaining similar degradation results as Pd/MCM-41. Pd/MCM-41 was not able to substantially reduce initial concentrations of hexamethylphosphoramide (HMPA) in a batch experiment. A small reduction in the initial HMPA concentration was attributed to adsorption onto the Pd/MCM-41 surfaces rather than degradation of the compound.
Several of the above-mentioned results suggest that MCM-41 and Pd/MCM-41 show great potential for being incorporated into water treatment technologies. Both the long term stability of the material in contact with deionized water and the longevity of a Pd/MCM-41 column in treating inflow TCE are very promising results with respect to applications in water treatment technologies. It is recommended that future work be pursued with this goal in mind.
|
4 |
Behaviour of Mesoporous Silica (MCM-41) Supported Catalysts in Degradation ReactionsGuthrie, Colin Peter January 2012 (has links)
A research project was carried out to investigate several aspects of Mobil’s composition of matter #41 (MCM-41) pertaining to its potential application in water treatment technologies. The goal of the work was to lead to a recommendation of whether further work investigating this particular, potential application is warranted at the present time.
A dissolution experiment indicated that Pd/MCM-41 is more stable in contact with deionized water at 25±0.1 degrees Celsius than purely siliceous MCM-41. Stability increases with increasing mass percent loading of Pd in the Pd/MCM-41 material. The increased stability was attributed to a reduction in Pd/MCM-41 surface areas relative to the parent MCM-41 material. The reduction in surface area is likely the result of partial or complete blocking of the MCM-41 mesopores by Pd centres. Ni/MCM-41 was less stable in contact with deionized water than MCM-41 and Pd/MCM-41. Both Ni and Pd impregnated MCM-41 exhibited enhanced stability relative to purely siliceous MCM-41 in 0.01 M NaCl solution. The stability enhancement was more pronounced for Pd/MCM-41. A long term dissolution experiment showed that MCM-41 retained its characteristic hexagonal mesopore structure and high surface area after 1,174 days of contact with deionized water.
The ability of Pd/MCM-41 to absorb hydrogen was investigated in a series of experiments in pressure cells at 25±0.1 degrees Celsius and approximately 101.3 kPa. The Pd in Pd/MCM-41 was able to absorb 0.85±0.18 moles of hydrogen per mole of Pd present. This was a higher level of absorption than found in most other, published Pd-hydrogen investigations. It is proposed that enhanced uptake of hydrogen by Pd/MCM-41 may be the result of a higher proportion of surface and subsurface sites in the samples relative to other supported Pd materials.
Batch and column trichloroethylene (TCE) degradation experiments indicated that Pd/MCM-41 has substantial longevity while degrading at least 91% of inflow TCE concentrations in hydrogen-saturated deionized water over 5,036 pore volumes. The average inflow TCE concentration was 4.94E-2 ± 4.87E-3 mmol/l with maximum and minimum concentrations of 7.24E-2 mmol/l and 2.63E-2 mmol/l, respectively. The dominant breakdown product of TCE degradation in the presence of Pd/MCM-41 was ethane. Minimal concentrations of intermediate degradation products were detected, if at all. This result suggests that TCE completely degrades to ethane before desorbing from the Pd/MCM-41 surface. It was shown that Pd/MCM-41 was more effective and had better longevity at treating inflow TCE compared to a lower cost substitute, Pd/sand. Unlike Pd/MCM-41, Ni/MCM-41 did not induce degradation of TCE. Column experiments using Ni-Pd/MCM-41 materials indicated that while the material does induce degradation of TCE, the Pd cannot be substituted for Ni on a 1:1 basis while still obtaining similar degradation results as Pd/MCM-41. Pd/MCM-41 was not able to substantially reduce initial concentrations of hexamethylphosphoramide (HMPA) in a batch experiment. A small reduction in the initial HMPA concentration was attributed to adsorption onto the Pd/MCM-41 surfaces rather than degradation of the compound.
Several of the above-mentioned results suggest that MCM-41 and Pd/MCM-41 show great potential for being incorporated into water treatment technologies. Both the long term stability of the material in contact with deionized water and the longevity of a Pd/MCM-41 column in treating inflow TCE are very promising results with respect to applications in water treatment technologies. It is recommended that future work be pursued with this goal in mind.
|
5 |
Investigation of ZrNi, ZrMn<sub>2</sub> and Zn(BH<sub>4</sub>)<sub>2</sub> Metal/Complex Hydrides for Hydrogen StorageEscobar, Diego 23 March 2007 (has links)
The demand for efficient and clean fuel alternatives has been increasing in recent years and is expected to become more pronounced in the future. Utilization of hydrogen as a fuel is one of the most promising energy resources due to its easy production, abundance, regeneration and not creation of greenhouse gases during its combustion. Although gaseous hydrogen has a very high energy content per unit weight, its volumetric energy density is rather low. The large scale use of hydrogen as a fuel crucially depends on the development of compact hydrogen storage materials with a high mass content of hydrogen relative to total mass and to volume.
Certain metals and alloys are capable of reversibly absorbing large amounts of hydrogen to form metal hydrides. They exhibit the highest volumetric densities of hydrogen and are very promising for hydrogen storage because of their efficiency, cost and safety. Some of the metal hydride families can also be used in hydrogen compressors.
The objective of this work is to investigate the synthesis and characterization behavior of intermetallic alloys (ZrMn2, ZrNi) for hydrogen compression and of complex hydrides (Zn(BH4)2 ) for on-board hydrogen storage. An overview of hydrogen as a fuel and its storage means is provided, synthesis and characterization methods of metal hydrides are presented and the effect of mechanical milling and the catalytic doping of metal/complex hydrides are investigated in detail. The hydrogen storage alloys (hydrides) are extensively characterized using various analytical tools such as: XRD, SEM, EDS, TCD, FTIR and GC/MS. The thermal (heat flow and weight loss) and volumetric (storage capacity, kinetics, cycle life, etc) analysis have been carried out via DSC/TGA and high pressure PCT apparatus. Finally conclusions and recommendations for future work are provided to improve the absorption/desorption cycle of hydrogen storage in the compounds under investigation.
|
6 |
Isochronal Hydrogenation Of Textured Magnesium/palladium Thin FilmsOzgit, Cagla 01 February 2009 (has links) (PDF)
Pure and palladium& / #8208 / covered 350 nm thick magnesium thin films were deposited on glass substrates via thermal evaporation. In the as& / #8208 / deposited state, films were highly textured with Mg (001) parallel to the substrate. Hydrogen loading experiments were carried out in two different conditions / namely isothermal and isochronal. Hydrogenation behaviors of the thin films were followed by twopoint probe electrical resistance and optical transmittance measurements, as well as x& / #8208 / ray diffraction studies. Isothermal hydrogenation experiments conducted on Pd& / #8208 / covered Mg thin films have revealed that these films can absorb hydrogen at temperatures starting from 333 K, producing MgH2 with a random texture. When the films were heated slowly starting from the room temperature, on the other hand, hydrogenation gives rise to a textured MgH2, where (110) parallel to the substrate with a minor (101) component. Formation of the textured hydride in isochronal loading was discussed within the context of lattice mismatch in Mg to MgH2 transformation. It was further shown that formation of such a textured hydride in Mg thin films minimizes in& / #8208 / plane lattice distortion.
|
7 |
Scanning tunneling microscopy and spectroscopy simulations of the silicon (111)-(7x7) surfaceLiu, Weiming, University of Lethbridge. Faculty of Arts and Science January 2006 (has links)
Since 1982, the Si (111)-(7x7) surface has been extensively studied both theoretically and experimentally with the modern powerful tools of STM and Scanning Tunneling Spectroscopy (STS). In this work, a simple atomic orbital model for the Si (111)-(7x7) surface is developed to simulate the experimental results of STM and STS. Based on Tersoff-Hamann’s theory for the tunneling current, simulations of clean Si (111)-(7x7) constant-current images are presented. The direct, real-space simulated topographic images of the surface are compared to experimental results qualitatively and quantitatively. The simulation of spectroscopic imaging and normalized conductance spectra are also included. The adsorption of atomic hydrogen atoms onto the Si (111)-(7x7) surface is also simulated. / xiv, 146 leaves ; 29 cm.
|
8 |
Effects of hydrogen in an aluminium-magnesium-silicon alloy during the production of extrusion ingotsAl Rais, Masood January 1995 (has links)
Hydrogen causes defects, for which aluminiurn alloy products are rejected. The behaviour of hydrogen in aluminium-magnesium-silicon alloy extrusion ingots, has been studied throughout the course of manufacture from freshly reduced aluminium. It is shown that hydrogen in the liquid metal is produced by temperature-dependent reaction between the metal and water vapour in the atmosphere. As the metal is received from the reduction cells, its temperature is -850 'C and its hydrogen content, >0.4 cm3/100 g, is too high for casting sound ingots. The metal is transferred first to a so-called melting furnace, where it is alloyed and stirred, thence to a holding furnace, where the composition is adjusted, the metal is degassed by gas sparging and allowed to settle before casting. The metal cools throughout these operations and as the temperature falls, the calculated value for the hydrogen content in equilibrium with the atmosphere falls in response to the reduced hydrogen solubility. The actual hydrogen content of the metal exhibited marked hysteresis in following the equilibrium value. Significant reduction of the hydrogen content occurred only when the metal was agitated. The hydrogen content never fell below the equilibrium value even during the nominal degassing operation, leading to the conclusion that gas sparging in a furnace does not positively remove hydrogen but only assists the equilibration. The hot-top DC casting process yielded a 8 m x 0.18 m diameter ingot with a virtually uniform hydrogen content. When this ingot was homogenised by heating it to 590˚C in a 7h cycle, a significant proportion of the hydrogen content was lost from the surface zone. By matching the loss to a theoretical model assuming diffusion control, it was shown that the loss of hydrogen is attenuated by trapping in micropores. The effects of simulated industrial atmospheres on the loss or absorption of hydrogen by the solid alloy were investigated in an extended series of laboratory heat-treatments. The interaction of the metal with these atmospheres was found to be determined by the nature of the oxide films formed and therefore the films were investigated by XPS and SIMS surface analysis techniques. In clean atmospheres the absorption or loss of hydrogen was determined by the balance between inward migration of protons and outward diffusion of hydrogen atoms through the oxide. Pollution of the air by chlorine or especially sulphur stimulated hydrogen absorption to a degree which seriously damaged the metal by pore growth. These effects are explained by modified compositions and structures in the surface oxide.
|
9 |
A Computational Framework for Long-Term Atomistic Analysis of Solute Diffusion in NanomaterialsSun, Xingsheng 04 October 2018 (has links)
Diffusive Molecular Dynamics (DMD) is a class of recently developed computational methods for the simulation of long-term mass transport with a full atomic fidelity. Its basic idea is to couple a discrete kinetic model for the evolution of mass transport process with a non-equilibrium thermodynamics model that governs lattice deformation and supplies the requisite driving forces for kinetics. Compared to previous atomistic models, e.g., accelerated Molecular Dynamics and on-the-fly kinetic Monte Carlo, DMD allows the use of larger time-step sizes and hence has a larger simulation time window for mass transport problems. This dissertation focuses on the development, assessment and application of a DMD computational framework for the long-term, three-dimensional, deformation-diffusion coupled analysis of solute mass transport in nanomaterials. First, a computational framework is presented, which consists mainly of: (1) a computational model for interstitial solute diffusion, which couples a nonlinear optimization problem with a first-order nonlinear ordinary differential equation; (2) two numerical methods, i.e., mean field approximation and subcycling time integration, for accelerating DMD simulations; and (3) a high-performance computational solver, which is parallelized based on Message Passing Interface (MPI) and the PETSc/TAO library for large-scale simulations. Next, the computational framework is validated and assessed in two groups of numerical experiments that simulate hydrogen mass transport in palladium. Specifically, the framework is validated against a classical lattice random walk model. Its capability to capture the atomic details in nanomaterials over a long diffusive time scale is also demonstrated. In these experiments, the effects of the proposed numerical methods on solution accuracy and computation time are assessed quantitatively. Finally, the computational framework is employed to investigate the long-term hydrogen absorption into palladium nanoparticles with different sizes and shapes. Several significant findings are shown, including the propagation of an atomistically sharp phase boundary, the dynamics of solute-induced lattice deformation and stacking faults, and the effect of lattice crystallinity on absorption rate. Specifically, the two-way interaction between phase boundary propagation and stacking fault dynamics is noteworthy. The effects of particle size and shape on both hydrogen absorption and lattice deformation are also discussed in detail. / Ph. D. / Interstitial diffusion in crystalline solids describes a phenomenon in which the solute constituents (e.g., atoms) move from an interstitial space of the host lattice to a neighboring one that is empty. It is a dominating feature in many important engineering applications, such as metal hydrides, lithium-ion batteries and hydrogen-induced material failures. These applications involve some key problems that might take place over long time periods (e.g., longer than 1 s), while the nanoscale behaviors and mechanisms become significant. The time scale of these problems is beyond the capability of established atomistic models, e.g., accelerated Molecular Dynamics and on-the-fly kinetic Monte Carlo. To this end, this dissertation presents the development and application of a new computational framework, referred to as Diffusive Molecular Dynamics (DMD), for the simulation of long-term interstitial solute diffusion in advanced nanomaterials. The framework includes three key components. Firstly, a DMD computational model is proposed, which accounts for three-dimensional, deformation-diffusion coupled analysis of interstitial solute mass transport. Secondly, nu- merical methods are employed to accelerate the DMD simulations while maintaining a high solution accuracy. Thirdly, a high-performance computational solver is developed to implement the DMD model and the numerical methods. Moreover, regarding its application, the DMD framework is first validated and assessed in the numerical experiments pertaining to hydrogen mass transport in palladium crystals. Then, it is employed to investigate the atomic behaviors and mechanisms involved in the long-term hydrogen absorption by palladium nanoparticles with different sizes and shapes. The two-way interaction between hydrogen absorption and lattice deformation is studied in detail.
|
10 |
Hydrogen-related defects in ZnO and TiO2Herklotz, Frank 11 November 2011 (has links)
Hydrogen-related defects in single-crystal ZnO and rutile TiO2 are investigated by means of infrared absorption, Raman scattering, photoluminescence and photoconductivity.
Four different defect centers in ZnO are considered: bond-centered hydrogen (HBC ), hydrogen bound within the oxygen vacancy (HO), hydrogen molecules, and a defect, which gives rise to a local vibrational mode at 3326 cm−1 .
The measurements identify HBC as a shallow donor with an ionization energy of 53 meV. The internal 1s → 2p transition of HBC is detected at 330 cm−1 in the Raman scattering and photoconductivity spectra. The decay of an exciton bound to HBC results in the photoluminescence line at 3360.1 ± 0.2 meV. The local vibrational mode of the O–H bond for bond-centered hydrogen has a frequency of 3611 cm−1 (H-I) and an effective charge of 0.28±0.03e. It is found that bond-centered hydrogen is unstable against annealing at 190 °C due to diffusion and trapping by other defects. The dominant sink is the hydrogen molecule.
It is demonstrated that the well-known I4 photoluminescence line at 3362.8 meV is due to the recombination of excitons bound to the HO donor.
The ionization energy of the HO donor is determined to be 47 meV. The 1s → 2pz (2pxy) electronic transition of HO is detected at 265 cm−1 in photoconductivity spectra. The formation of HO occurs via trapping of HBC at vacancies left by out-diffusing oxygen.
It is shown that sub-band gap illumination leads to an intensity reduction of the O–H local vibrational mode at 3326 cm−1 and the appearance of a previously unreported infrared absorption line at 3358 cm−1. The signals are identified as stretch modes of an O–H bond associated with the same defect in different charge states. The measurements indicate that this defect has a deep level in the band gap of ZnO at roughly Ec − 1.7 eV. Additionally, results on the thermal stability, uniaxial stress response, and temperature dependence of the transition rates between the two charge states of this defect are presented.
Interstitial hydrogen in rutile TiO2 is studied by infrared absorption. It is shown that the defect is a shallow donor with an ionization energy of 10 meV. The absorption lines at about 3290 cm−1 consists of local vibrational modes due to the neutral and the positive charge states of the donor with relative intensities depending on the measurement conditions. In the neutral charge state, the defect reveals two modes at 3288.3 and 3292 cm−1 (10 K), whereas the positive charge state has a vibrational mode at 3287.4 cm−1. An unknown hydrogen complex was found to contribute to the 3288 cm−1 feature.
|
Page generated in 0.093 seconds