• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen Pipeline Infrastructure Design for Germany in 2045

von Mikulicz-Radecki, Flora Marianne January 2023 (has links)
Germany’s commitment to carbon neutrality by 2045 underscores the need for climate action, with hydrogen’s multiple uses in industry, transport, and energy offering a viable solution. Efficient retrofitting of the extensive natural gas pipeline network can enable hydrogen to be transported from supply to demand centers. The aim of this study is to develop a hydrogen pipeline network strategy for Germany in 2045 that is consistent with carbon neutrality goals while minimizing associated costs. Using a single-period deterministic Mixed Integer Linear Programming (MILP) approach, the focus is on estimating peak-hour transport demand derived from the spatial distribution of demand and supply. This estimation is based on openly available data from the Germany Energy Agency (dena) pilot study on carbon neutrality. The methodology aims to allocate hydrogen energy flows along existing pipelines through a retrofitting approach. The base scenario is derived from the projected hydrogen demand and supply for a carbon-neutral Germany in 2045, as estimated in the dena pilot study. To explore different possibilities, a sensitivity analysis compares five different demand scenarios. Each scenario examines different hard-to-abate subsectors that have limited options for decarbonization. Evaluating the routes and utilization rates across the pipeline network provides insights into the feasibility, with certain routes, particularly those originating in the north, emerging as key. The majority of pipelines in the network have low utilization rates below 25% in peak hours, which may indicate economic infeasibility or the need for alternative transport strategies. In addition, a cost of avoided emissions analysis weighs scenario-specific emission reductions against network costs. Of particular note is the network connecting CHP plants and energy-intensive industries, which appears to strike an optimal balance in terms of costs of avoided emissions and utilization rate in peak hours. Nevertheless, the study does not consider physical flow calculations, so further validation is required in this respect. The potential of the methodology, however, liesin its ability to quickly assess different scenarios and provide valuable insights into economic, environmental, and social impacts. / Tysklands åtagande om koldioxidneutralitet senast 2045 understryker behovet av klimatåtgärder, och vätgasens många användningsområden inom industri, transport och energi erbjuder en hållbar lösning. Effektiv eftermontering av det omfattande naturgasledningsnätet kan göra det möjligt att transportera vätgas från utbuds- till efterfrågecentra. Syftet med denna studie är att utveckla en strategi för vätgasnätet i Tyskland 2045 som är förenlig med målen för koldioxidneutralitet och samtidigt minimerar de tillhörande kostnaderna. Med hjälp av en deterministisk MILP-metod (Mixed Integer Linear Programming) för en enda period ligger fokus på att uppskatta efterfrågan på transporter under maxtimmar utifrån den rumsliga fördelningen av efterfrågan och utbud. Denna uppskattning baseras på öppet tillgängliga data från denas pilotstudie om koldioxidneutralitet. Metoden syftar till att fördela vätgasenergiflöden längs befintliga rörledningar genom en eftermonteringsstrategi. Det grundläggande scenariot härleds från den beräknade efterfrågan och tillgången på vätgas för ett koldioxidneutralt Tyskland 2045, enligt uppskattningar i dena-pilotstudien. För att utforska olika möjligheter jämförs fem olika efterfrågescenarier i en känslighetsanalys. Varje scenario undersöker olika delsektorer som är svåra att minska och som har begränsade alternativ för utfasning av fossila bränslen. Utvärderingen av sträckningarna och utnyttjandegraden i rörledningsnätet ger insikter om genomförbarheten, där vissa sträckningar, särskilt de med ursprung i norr, framstår som viktiga. Majoriteten av rörledningarna i nätverkethar låga nyttjandegrader under 25% under rusningstid, vilket kan indikera ekonomisk ogenomförbarhet eller behovet av alternativa transportstrategier. Dessutom väger en kostnads-/nyttoanalys av utsläpp scenariospecifika utsläppsminskningar mot nätverkskostnader. Särskilt värt att notera är det nätverk som förbinder kraftvärmeverk och energiintensiva industrier, vilket verkar ge en optimal balans när det gäller kostnader för utsläpp och nyttjandegrad. Studien tar dock inte hänsyn till fysiska flödesberäkningar, så ytterligare validering krävs i detta avseende. Metodens potential ligger dock i dess förmåga att snabbt bedöma olika scenarier och ge värdefulla insikter om ekonomiska, miljömässiga och sociala effekter.
2

Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture

El Gemayel, Gemayel 19 September 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
3

Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture

El Gemayel, Gemayel 19 September 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.
4

Integration and Simulation of a Bitumen Upgrading Facility and an IGCC Process with Carbon Capture

El Gemayel, Gemayel January 2012 (has links)
Hydrocracking and hydrotreating are bitumen upgrading technologies designed to enhance fuel quality by decreasing its density, viscosity, boiling point and heteroatom content via hydrogen addition. The aim of this thesis is to model and simulate an upgrading and integrated gasification combined cycle then to evaluate the feasibility of integrating slurry hydrocracking, trickle-bed hydrotreating and residue gasification using the Aspen HYSYS® simulation software. The close-coupling of the bitumen upgrading facilities with gasification should lead to a hydrogen, steam and power self-sufficient upgrading facility with CO2 capture. Hydrocracker residue is first withdrawn from a 100,000 BPD Athabasca bitumen upgrading facility, characterized via ultimate analysis and then fed to a gasification unit where it produces hydrogen that is partially recycled to the hydrocracker and hydrotreaters and partially burned for power production in a high hydrogen combined cycle unit. The integrated design is simulated for a base case of 90% carbon capture utilizing a monoethanolamine (MEA) solvent, and compared to 65% and no carbon capture scenarios. The hydrogen production of the gasification process is evaluated in terms of hydrocracker residue and auxiliary petroleum coke feeds. The power production is determined for various carbon capture cases and for an optimal hydrocracking operation. Hence, the feasibility of the integration of the upgrading process and the IGCC resides in meeting the hydrogen demand of the upgrading facility while producing enough steam and electricity for a power and energy self-sufficient operation, regardless of the extent of carbon capture.

Page generated in 0.1705 seconds