Spelling suggestions: "subject:"aydrogen embrittlement"" "subject:"bydrogen embrittlement""
21 |
Hydrogen induced surface cracking of two orthopedic implant alloysWasielewski, Ray C. January 1982 (has links)
Electrolytic charging of hydrogen, at room temperature and in the absence of externally applied stress, induced surface cracking in 316 stainless steel and cobalt based ZIMALOY. Hot Isostatic Pressed (H.I.P.) ZIMALOY showed less susceptibility to surface cracking than 316 stainless steel samples. The susceptibility of 316 stainless steel to surface cracking was determined with samples in the High Energy Rate Forged (HERF), the sensitized, the annealed, and the annealed and sensitized conditions. Investigations showed that surface cracking typically occurred at specific microstructural features. Hence, the relative susceptibilities of twin boundaries, slip bands, grain boundaries, and heavily sensitized regions was established.
It was observed that twin boundaries crack most readily in non-sensitized samples, and that both grain boundaries and twin boundaries crack easily in sensitized structures. These observations, coupled with the similarity between hydrogen embrittlement and failure of orthopedic implants, suggest that orthopedic applications should use H.I.P. ZIMALOY in preference to 316 stainless steel whenever possible, and that when the use of 316 stainless steel is unavoidable, HERFed parts should be used. Further investigations are recommended to better assess the hydrogen compatibility of sensitized 316 stainless steel, and to determine the influence of sensitization on the suitability of 316 stainless steel for orthopedic application. / Master of Science
|
22 |
Stress corrosion cracking and hydrogen embrittlement of a martensitic high strength stainless steelNorthover, Jeremy Peter January 1974 (has links)
No description available.
|
23 |
An Investigation of Bent-Beam Stress-Corrosion Test for Titanium AlloysLeón Zapata, Daniel January 2019 (has links)
Titanium alloys are highly resistant to all types of corrosion due to their excellent ability to form an oxide film on the surface. However, under certain circumstances, these alloys may experience an environmental degradation which could potentially, under the application of mechanical stress, lead to a complete failure of the material. One of these cracking processes is stress-corrosion cracking (SCC). SCC has an embrittling effect on otherwise ductile materials under tensile stress. Since titanium alloys are frequently used in the aerospace industry and it is therefore of interest to test these alloys in different environment in order to prevent any future accidents. SCC testing is frequently tested at GKN Aerospace and a new testing method is of interest. The main objective with this work was to gain knowledge of the testing method. Bent-beam testing method has been used to investigate stress-corrosion cracking (SCC) of titanium alloys in a laboratory based experiment. The bent-beam testing method was of type 2-point bent beam test, where a saline solution was applied at the apex of the specimen. The specimens were loaded to a range of stresses from 40%, to 95% of the materials yield strength and the salt concentration in the saline solution was 1wt% and 3wt%. By doing so, a relative susceptibility of the different alloys could be established. Three different titanium alloys were tested: Ti-6Al-4V, Ti-8Al-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo. The testing method was able to cause cracking on all titanium alloys, where Ti-6Al-4V was found to be the least susceptible to SCC. Ti-8Al-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo showed an overall high susceptibility to SCC as cracking occurred in all testing configurations. Cracking was observed on both the surface of the specimen as well as in the cross sections, where the cracks grew perpendicular to the surface. SEM was also used to evaluate the crack propagation in Ti-8Al-1Mo-1V, and Ti-6Al-2Sn-4Zr-2Mo, and it was found that the cracks grew mostly along the grain boundaries.
|
24 |
Mechanisms of environmentally influenced fatigue crack growth in lower strength steelsSuresh, Subramanian January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Subramanian Suresh. / Sc.D.
|
25 |
On the hydrogen embrittlement of oil and gas grade alloy 718 and alloy 945XBrown, Michael January 2017 (has links)
Hydrogen embrittlement is a mechanism by which hydrogen enters a metal, causing a loss in strength and ductility. This phenomenon is of great concern to the oil and gas industry as deep-sea wells operate in high temperature, highly acidic and high stress conditions. Nickel-based superalloys are ideal for use in such environments due to their high strength and exceptional resistance to both corrosion and hydrogen embrittlement. Alloy 945X is a newly developed nickel-based superalloy that has been specifically designed for use in downhole applications. This thesis compares the performance of hydrogenated Alloy 945X with the more established oil and gas grade Alloy 718. The hydrogenating environment of an oil well was simulated via cathodic polarisation. The effect of hydrogen content on the tensile performance of both alloys was studied, alongside fracture and microstructural analysis. A new video-recording technique was employed to investigate the crack initiation and propagation behaviour of both alloys, alongside in-SEM tensile testing. The diffusive nature of hydrogen in Alloy 945X and Alloy 718 was explored. With the use of a ppm-sensitive hydrogen analyser, it was possible to measure the rate at which hydrogen enters and outgassed from both materials as well as the saturation conentrations. Outgassing behaviour was also examined using X-ray diffraction and nano-indentation. The depth of brittle fracture in cathodically charged tensile specimens was correlated with Fickâs diffusion calculations and the critical concentration for embrittlement calculated. In a similar method, a parameter (based on diffusion coefficient calculations) that describes the rate of embrittlement in a material was proposed.
|
26 |
Hydrogen embrittlement in nuclear and bearing applications : from quantum mechanics to thermokinetics and alloy designStopher, Miles Alexander January 2018 (has links)
Hydrogen embrittlement in ferrous and non-ferrous alloys is, and has been for over a century, a prominent issue within many sectors of industry. Despite this, the mechanisms by which hydrogen embrittlement occurs and the suitable means for its prevention are yet to be fully established. As hydrogen fuel becomes a prominent feature in modern concepts of a sustainable global energy infrastructure and nuclear power enters its renaissance, with commercially viable fusion plants on the horizon, hydrogen embrittlement is becoming an ever more pertinent issue. This has led to a considerable demand for novel alloys resistant to hydrogen embrittlement, notably within the bearings industry, where the commonly conflicting properties of high strength and hydrogen embrittlement resistance are required. This work investigates the mechanisms through which hydrogen embrittlement and irradiation damage occur in steels and nickel-based alloys respectively, with novel alloys designed for improved resistance. Through the engineering of secondary phases, optimised for helium and/or hydrogen trapping capacity, the novel alloys present the benefits of such trapping species with respect to embrittlement resistance. Such species have been studied in depth with respect to their interactions with hydrogen, establishing a novel mechanism of hydrogen embrittlement - the hydrogen enhanced dissolution and shearability of precipitates, leading to enhanced localised plasticity.
|
27 |
Microstructural Evaluation of Hydrogen Embrittlement and Successive Recovery in Advanced High Strength SteelAllen, Quentin Scott 01 December 2017 (has links)
Advanced high strength steels (AHSS) have high susceptibility to hydrogen embrittlement, and are often exposed to hydrogen environments in processing. In order to study the embrittlement and recovery of steel, tensile tests were conducted on two different types of AHSS over time after hydrogen charging. Concentration measurements and hydrogen microprinting were carried out at the same time steps to visualize the hydrogen behavior during recovery. The diffusible hydrogen concentration was found to decay exponentially, and equations were found for the two types of steel. Hydrogen concentration decay rates were calculated to be -0.355 /hr in TBF steel, and -0.225 /hr in DP. Hydrogen concentration thresholds for embrittlement were found to be 1.04 mL/100 g for TBF steel, and 0.87 mL/100g for DP steel. TBF steel is predicted to recover from embrittlement within 4.1 hours, compared to 7.2 hours in DP steel. A two-factor method of evaluating recovery from embrittlement, requiring hydrogen concentration threshold and decay rate, is explained for use in predicting recovery after exposure to hydrogen. Anisotropic hydrogen diffusion rates were also observed on the surface of both steels for a short time after charging, as hydrogen left the surface through <001> and <101> grains faster than grains with <111> orientations. This could be explained by differences in surface energies between the different orientations.
|
28 |
Fragilisation par l'hydrogène en fatigue oligocyclique de l'Inconel 718 issu d’un procédé de fabrication additive (LBM) / Hydrogen embrittlement on the low cycle fatigue behavior of laser beam melting Inconel 718 (LBM)Puydebois, Simon 13 February 2019 (has links)
Cette étude porte sur la sensibilité à la fragilisation par l'hydrogène (FPH) d'un alliage base nickel, l’Inconel 718 issu d’un procédé de fabrication additive (FA), sous sollicitation cyclique. Cematériau est utilisé pour la réalisation de certains composants des ensembles propulsifs d’Ariane qui sont fabriqués par Ariane Group. Dans ce domaine, certaines pièces sont sollicitées sous « ambiancehydrogène ». Ainsi, le risque de fragilisation de ces pièces est une problématique de premier ordre.Pour cela, nous avons caractérisé l’état métallurgique d’un Inconel 718 FA à différentes échelles structurales afin d’observer un possible impact du procédé de mise en œuvre sur la microstructure, puis d’envisager sa conséquence sur le comportement mécanique et la sensibilité à la FPH de l’alliage. Notons que nous avons conduit une étude plus réduite sur un alliage forgé afind’avoir des éléments de comparaison. Afin de comprendre les mécanismes de fragilisation par hydrogène de l’Inconel 718 FA, il est nécessaire de connaitre l’état et la mobilité de l’hydrogène dans le matériau. Des analyses deperméation électrochimique (PE) et gazeuse (PG), ainsi que de spectroscopie de désorption thermique (TDS) apportent des éléments de compréhension des mécanismes de piégeage et de diffusion de l’hydrogène. Ils permettent de discuter l’implication des joints de grains dans les mécanismes dediffusion ainsi que l'effet des hétérogénéités microstructurales sur les mécanismes de piégeage dans l’Inconel 718 FA.D'autre part, l’influence de l’hydrogène sur le comportement mécanique a été questionnée en traction et en fatigue oligocyclique en terme de comportement élasto-viscoplastique, de processus d’initiation, de propagation de fissure en fatigue et de ténacité. Dans ce cadre nous présentons, dans unpremier temps, l’étude du comportement en traction et sa sensibilité à l’hydrogène pour l’Inconel 718 FA. Nous questionnons lors de cette partie l’effet de la vitesse de sollicitation sur les mécanismes defragilisation ainsi que sur les différentes interactions hydrogène/matériau. Des essais de traction interrompue ont été réalisés afin de questionner l’effet de l’hydrogène sur le comportement viscoplastique et notamment questionner les interactions hydrogène/plasticité.Dans un deuxième temps, le comportement en fatigue de l’Inconel 718 FA en présence d’hydrogène gazeux est interrogé à l’aide d’essais de fatigue pour un rapport de charge, R de 0,1 sous une pression d’hydrogène de 300 bar. Il est clairement mis en évidence une réduction du nombre decycles à rupture en présence d’hydrogène ainsi qu’un changement de mode de rupture. L’impact de l’hydrogène a été évalué sur les étapes d’initiation et de propagation de fissures ainsi que sur la ténacité du matériau en fonction de la métallurgie de l’alliage.L'ensemble des résultats obtenus permettent une discussion de la sensibilité du matériau à la FPH, tenant compte en particulier des interactions hydrogène/plasticité. / This study focuses on the hydrogen embrittlement sensitivity (HE) under cyclic loading of a nickel based alloy, Inconel 718, manufactured by the additive manufacturing process (AM). This material is used in some components of Ariane cryogenic engines that are manufactured by ArianeGroup. Some of these components are solicited under "hydrogen atmosphere", and the risk of embrittlement is a major problem.The metallurgical states of the Inconel 718 AM alloy have been characterized at different structural scales in order to observe a possible impact of the manufacturing process on the microstructure and discuss the possible consequences on the mechanical behaviour of the alloy underhydrogen pressure. Moreover, a forged alloy has also been studied for comparison.To discuss the mechanisms of hydrogen embrittlement in the material, it is first necessary to study the hydrogen behaviour in the material. Electrochemical and gaseous permeation analyses as well as TDS were performed to provide insights into the mechanisms of hydrogen diffusion. Fromthese results, the involvement of grain boundaries in the diffusion mechanisms and the effect of microstructural heterogeneities on the trapping mechanisms in this material have been discussed.On the other hand, the influence of hydrogen on the mechanical behaviour has been investigated under monotonic and cyclic loading in terms of elasto-viscoplastic behaviour, crack initiation process, fatigue crack propagation and toughness. In a first part, the tensile behaviour of the Inconel 718 AMunder hydrogen pressure has been considered. The effects of the loading rate on the mechanisms of embrittlement have been addressed. Moreover, interrupted tensile tests have been carried out to identify the effect of hydrogen on the viscoplastic behaviour and allowing to discuss hydrogen /plasticity interactions.The fatigue behaviour of Inconel 718 AM in the presence of hydrogen gas was investigated by cyclic tests for a 0.1 load ratio (R) under a 300 bar H2 at room temperature. It has been shown that hydrogen leads to a clear decrease of the number of cycles to rupture and to a change in failure mode.The impact of hydrogen has been evaluated on the fatigue crack initiation and propagation stages as well as on the toughness of the material.Finally, all the obtained results allowed a discussion of the hydrogen embrittlement sensitivity of the material, taking into account the hydrogen / plasticity interactions.
|
29 |
Environmetally Assisted Cracking in Metals under Extreme ConditionsPham, Hieu 2011 August 1900 (has links)
Environmentally Assisted cracking (EAC) is a very critical materials science problem that concerns many technological areas such as petrochemical engineering,
aerospace operations and nuclear power generation, in which cracking or sudden failure of materials may happen at stress far below the tensile strength. This type of
corrosion is initiated at the microscopic level and is complicated due to the combination of chemistry (reaction caused by corrosive agents) and mechanics (varying load).
As EAC is generally related to the segregation of impurity elements to defects (mainly grain boundaries), the symptoms of risk may not be apparent from the exterior of the metal components: hence EAC remains latent and gives no sign of warning until the failure occurs.
Due to its intricate nature, conducting experiments on this phenomenon involves difficulties and requires much effort. In this work, we employed advanced molecular simulation techniques to study EAC in order to give insight into its atomistic behavior. First, Density-Functional Theory (DFT) method was used to investigate the fundamental processes and mechanism of EAC-related issues at the nanoscale level, with two case studies concerning the stress corrosion in iron and hydrogen embrittlement in palladium. When segregating to the grain boundary (GB) of iron, different impurity elements such as sulfur, phosphorus and nitrogen raise corrosion failures in a variety of ways. Hydrogen atoms, due to their mobility and small atomic size, are able to form high occupation at crystal defects, but show different interactions to vacancy and GB. Then, we used the classical Molecular Dynamics (MD) method to gain an
understanding of the dynamic response of materials to mechanical load and the effects of temperature, strain and extreme conditions (high pressure shock compression) on structural properties. The MD simulations show that hydrogen maintains the highest localization at grain boundaries in the vicinity of ambient temperatures, and grain boundaries are the preferred nucleation sites for dislocations and voids. This computational work, using DFT and MD techniques, is expected to contribute to the better understanding on chemistry and mechanisms of complex environment-assisted cracking phenomenon at a fundamental level in order to beneficially complement
conventional laboratory approaches.
|
30 |
Ψαθυροποίηση υδρογόνου λόγω διάβρωσης και προστασία με χρήση τοπικής επικάλυψης με καθαρό αλουμίνιοΠετρογιάννης, Παρασκευάς 03 March 2009 (has links)
Το τεχνολογικό προβλήμα της υποβάθμισης της δομικής ακεραιότητας
“γηρασκόντων” αεροσκαφών αποτελεί σήμερα αντικείμενο έρευνας αιχμής τόσο για τις
αεροπορικές βιομηχανίες και τους διεθνείς και εθνικούς οργανισμούς ασφάλειας πτήσεων,
όσο και για την επιστημονική κοινότητα.
Οι μέχρι σήμερα προσπάθειες εστιάζονται κυρίως στην μελέτη της επίδρασης των
καταστάσεων πολλαπλής βλάβης και ευρείας έκτασης βλάβης κόπωσης στην δομική
ακεραιότητα των γηρασμένων αεροσκαφών. Σε πολλές όμως περιπτώσεις εκτός από
καταστάσεις πολλαπλής βλάβης και ευρείας έκτασης βλάβη κόπωσης, παρατηρούνται
επίσης εκτεταμένα προβλήματα διάβρωσης παρά την καλή προστασία που γενικά
προσφέρουν οι χρησιμοποιούμενες σήμερα μέθοδοι αντιδιαβρωτικής προστασίας.
Πρόσφατες έρευνες έδειξαν ότι η προκαλούμενη διάβρωση δεν προκαλεί μόνο μείωση της
διατομής των υλικών αλλά και ψαθυροποίηση λόγω υδρογόνου η οποία υποβαθμίζει την
δυσθραυστότητα του υλικού και την ικανότητα του να αποταμιεύσει μηχανική ενέργεια
πρίν την θραύση.
Στην παρούσα διατριβή:
- Παρουσιάζονται επιπρόσθετα αποδεικτικά στοιχεία για την ψαθυροποίηση λόγω
υδρογόνου που προκαλείται από την διάβρωση στο κράμα αλουμινίου 2024, με βάση
πειράματα εφελκυσμού σε διαβρωμένα και αδιάβρωτα δοκίμια του κράματος. Τα
αποτελέσματα των δοκιμών εφελκυσμού υποστηρίζονται από εκτενή μεταλλογραφική και
στερεοσκοπική μελέτη, ανάλυση των επιφανειών θραύσης καθώς επίσης και από
μετρήσεις του εκλυόμενου υδρογόνου. Επιπρόσθετα μελετάται η επίδραση του πάχους των
ελασμάτων στην μηχανική συμπεριφορά σε εφελκυσμό των διαβρωμένων δοκιμίων.
- Επιβεβαιώνεται η αντιδιαβρωτική προστασία που παρέχει στο κράμα 2024 η επικάλυψη
καθαρού αλουμινίου (Alcladding), αλλά επιπλέον, διαπιστώνεται ότι η επικάλυψη
προσφέρει επίσης προστασία από την ψαθυροποίηση λόγω υδρογόνου που συνοδεύει την
διάβρωση. - Η κύρια συμβολή της εργασίας έγκειται στην παροχή δεδομένων ότι η τοπική επικάλυψη
(local Alcladding) της επιφάνειας των δοκιμίων με καθαρό αλουμίνιο σε περιορισμένα
ποσοστά της επιφάνειας αυτών, αρκεί για μια αποτελεσματική προστασία τόσο έναντι της
βλάβης διάβρωσης όσο και έναντι της προκαλούμενης ψαθυροποίησης λόγω διάχυσης και
παγίδευσης υδρογόνου στο εσωτερικό του κράματος.
- Τέλος, εισάγεται μεθοδολογία για την εκτίμηση της επίδρασης της διάβρωσης και της εξ’
αυτής προκαλούμενης ψαθυροποίησης του υλικού σε φαινόμενα κόπωσης του κράματος
2024 μέσω της τροποποίησης του “Χάρτη Βλάβης Κόπωσης”, ώστε ο τελευταίος να
μπορεί να αξιοποιηθεί για την περίπτωση διαβρωμένων δοκιμίων. / A possible integrity loss represents a not tolerable scenario for aging aircraft structures. To
face the mentioned technological and scientific problem essential efforts have been
undertaken by the scientific community as well as the aircraft industries and the
international and national flight safety organizations.
Nowadays research focuses to the study of the effects of widespread fatigue damage
(WFD) and multiple site damage (MSD) scenarios on the structural integrity of the aging
aircrafts. However, in numerous cases, additionally to WFD and MSD, extensive corrosion
problems have been observed.
Recent investigations have shown that the corrosion attack does not cause only a reduction
of the cross-section of the structural member as well as a possible onset of fatigue cracks,
but also a corrosion induced hydrogen embrittlement which reduces the fracture toughness
of the material and its ability to store mechanical energy before fracture.
In the present thesis:
- Evidence is presented for a corrosion-induced hydrogen embrittlement of the alloy 2024
also in the absence of mechanical loads. A parametric study including series of tensile tests
carried out on both corroded and uncorroded 2024 aluminum alloy specimens has been
performed. The tensile tests results are supported by an extensive metallographic and
stereoscopic study, analysis of the fracture surfaces, as well as hydrogen measurements.
The effect of the sheet thickness on the tensile behaviour of corroded aluminum alloy 2024
specimens has been investigated, as well.
- The corrosion protection offered by the aluminum coating (Alcladding) on the substrate
alloy 2024 is confirmed. Additionally, evidence is provided on the protection offered by
the aluminum coating against hydrogen embrittlement that accompanies corrosion.
- The main contribution of the thesis is the provision of data for the case of local coating on
the specimen surface, indicate that aluminum coating in limited percentages on the
specimen surface for the alloy 2024 is sufficient for an efficient protection against corrosion damage, as well as against the induced embrittlement stem from the diffusion
and trapping of hydrogen in the material interior.
- Finally, a methodology is introduced for the estimation of the effect of corrosion and the
corrosion-induced hydrogen embrittlement on the fatigue behaviour of the aluminum alloy
2024, through the modification of the Fatigue Damage Map (FDM), in order to utilize it
for the case of corroded members.
|
Page generated in 0.3433 seconds