Spelling suggestions: "subject:"hydrogenisation"" "subject:"androgenisation""
1 |
Development and Characterization of Fullerene Based Molecular Systems using Mass Spectrometry and Related Techniques.Greisch, Jean-François 27 October 2008 (has links)
The investigation and control of the properties of carbon based materials such as fullerenes
and nanotubes is a highly dynamic research field. Due to its unique properties, e.g. an almost nano-dimensional size, three-dimensional cage topology, hydrophobicity, rich redox- and photochemistry, large absorption cross section, C60 has a high potential as building block for molecular devices and biological applications. It can be functionalized, anchored to a surface and self-assembled into larger supramolecular entities, such as monolayers. Mass
spectrometry and related techniques such as ion-molecule reactions, action spectroscopy and ion mobility have been used throughout this work to study fullerene based systems, ranging from hydrides, derivatives, non-covalent complexes and coordinated metal complexes.
Simulations predicting structural, electronic and mechanical properties have been combined with the experimental results to assist in their analysis and interpretation. Using ion molecule reactions, the reactivity of gas phase C60 anions with methanol has been studied. Hydride formation by simple collisions in the gas phase with methanol as well as reversible
dehydrogenation by infrared multiphoton activation has been demonstrated. C60
functionalization by 3-azido-3-deoxythymidine (AZT) has been performed and the charged product characterized both by collisional activation and action spectroscopy. Deprotonation has been shown to lead to rearrangements of the nucleoside analogue and to a subsequent charge transfer to the fullerene. To prevent unwanted rearrangements and side reactions,
encapsulation of C60 is suggested, the host molecule acting as a steric barrier.
C60 complexation by γ-cyclodextrins has been performed and the ions of the complexes characterized both by collisional activation and ion mobility. It has been demonstrated that,
compared to deprotonated species, the sodiated C60:(γ-cyclodextrin)2 ions were highly compact structures.
With only two small polar caps accessible to reagents, sodiated C60:
(γ-cyclodextrin)2 complexes sterically protect the C60 core from unwanted side reactions.
Finally, explorative work on C60 immobilization on silver colloids using surface enhanced Raman spectroscopy and on the characterization of C60 complexes with iron and manganese
porphyrin is presented.
|
2 |
Vibrational properties of epitaxial silicene on Ag(111) / Die Schwingungseigenschaften von epitaktischen Silicen auf Ag(111)Solonenko, Dmytro Ihorovych 18 December 2017 (has links) (PDF)
This dissertation works out the vibrational properties of epitaxial silicene, which was discovered by Vogt et al. in 2012 by the epitaxial synthesis on the silver substrate. Its two-dimensional (2D) character is modified in comparison to the free-standing silicene due to its epitaxial nature, since the underlying substrate alters the physical properties of silicene as a result of the strong hybridization of the electronic levels of the substrate and adlayer. The growth of silicene layers is complicated by the sensitivity of the Si structures to the experimental conditions, mainly temperature, resulting in the formation of several seemingly different surface reconstructions. Another Si structure appears on the Ag surface at a supramonolayer coverage. The Raman spectroscopy was utilized to understand the relation between different Si structures and reveal their origin as well as to investigate the phonon-related physical properties of two-dimensional Si sheets.
The central core of this work is the growth and characterization of these 2D silicene monolayers on the Ag (111) surface as well as the formation of silicene multilayer structures. The characterization of these materials was performed using in situ surface-sensitive measurement methods such as Raman spectroscopy and low-energy electron diffraction under ultra-high vacuum conditions due to high chemical reactivity of epitaxial silicene. Additional characterization was done ex situ by means of scanning force microscopy. The experimentally determined spectral signature of the prototypical epitaxial (3x3)/(4x4) silicene structure was confirmed by ab initio calculations, in collaboration with theory groups. The Raman signatures of the other 2D and 3D Si phases on Ag (111) were determined which allowed us to provide a clear picture of their formation depending on the preparation conditions.
The monitoring of the silicene multi-layer growth yielded the vibrational signature of the top layer, reconstructed in a (√3x√3) fashion. It was compared to the inverse, (√3x√3)-Ag/Si(111), system showing the vast amount of similarities, which suggest that the (√3x√3) reconstruction belong to the silver layer. The chemical and physical properties of this surface structure additionally strengthen this equivalence.
The possibility of functionalization of epitaxial silicene was demonstrated via exposure to the atomic hydrogen under UHV conditions. The adsorbed hydrogen covalently bonds to the silicene lattice modifying it and reducing its symmetry. As shown by Raman spectroscopy, such modification can be reversed by thermal desorption of hydrogen. The excitation-dependent Raman measurements also suggest the change of the electronic properties of epitaxial silicene upon hydrogenation suggesting that its originally semi-metallic character is modified into a semiconducting one. / Die experimentellen Forschungsarbeiten zum Thema Silicen basieren auf den 2012 von Vogt et al. durchgeführten Untersuchungen zu dessen Synthese auf Silbersubstraten. Diese Untersuchungen lieferten die Grundlage, auf der zweidimensionales (2D) epitaktisches Silicen sowie weitere 2D Materialien untersucht werden konnten. In den anfänglichen Arbeiten konnte dabei gezeigt werden, dass sich die Eigenschaften von epitaktischem Silicen gegenüber den theoretischen Vorhersagen von frei-stehendem Silicen unterscheiden. Darüber hinaus verkomplizieren sich die experimentellen Untersuchungen dieses 2D Materials, da auf dem Ag(111) Wachstumssubstrat sechs verschiedene 2D Si Polytypen existieren. Eine detaillierte Darstellung dieser Untersuchungen findet sich in dem einführenden Kapitel der vorliegen Promotionsschrift. Der zentrale Kern dieser Arbeit beschäftigt sich mit dem Wachstum und der Charakterisierung dieser 2D Silicen Monolagen auf Ag(111) Oberflächen sowie der Bildung von Silicen- Multilagen Strukturen. Die Charakterisierung dieser Materialien wurde in situ mit oberflächenempfindlichen Messmethoden wie der Raman Spektroskopie und der niederenergetischen Elektronenbeugung unter Ultrahochvakuum-Bedingungen durchgeführt. Eine zusätzliche Charakterisierung erfolgte ex situ mittels Raster-KraftMikroskopie. Die experimentell bestimmte spektrale Raman-Signatur der prototypischen epitaktischen (3x3)/(4x4) Silicene Struktur wurde durch ab initio Rechnungen, in Zusammenarbeit mit Theoriegruppen, bestätigt. Durch diesen Vergleich wir die zweidimensionale Natur der epitaktischen Silicen-Schichten vollständig bestätigt, wodurch andere mögliche Interpretationen ausgeschlossen werden können. Darüber hinaus wurden die Ramans-Signaturen der weiteren 2D und 3D Siliziumphasen auf Ag(111) bestimmt, wodurch sich ein klares Bild der Bildung dieser Strukturen in Abhängigkeit von den Präparationsbedingungen ergibt. Um die Möglichkeit der Funktionalisierung von Silicen und der weiteren 2D Si Strukturen zu testen, wurden diese unter UHV Bedingungen atomarem Wasserstoff ausgesetzt. Durch die Bindung zu den Wasserstoffamen wird die kristalline Struktur der Silicen-Schichten modifiziert und die Symmetrie reduziert, was sich deutlich in der spektralen Raman-Signatur zeigt. Wie mittels Raman Spektroskopie gezeigt werden konnte, kann diese Modifikation durch thermische Desorption des Wasserstoffs rückgängig gemacht werden, ist also reversibel. Raman Messungen mit verschiedenen Anregungswellenlängen deuten darüber hinaus auf die Änderung der elektronischen Eigenschaften der Silicen-Schichten durch die Hydrierung hin. Der ursprüngliche halbmetallische Charakter der epitaktischen Silicen-Schicht geht möglicherweise in einen halbleitenden Zustand über. Das Wachstum von Silicen Multilagen wurde ebenfalls mit in situ Ramanspektroskopie verfolgt. Die sich dabei ergebene Raman-Signatur wurde mit der Raman-Signatur von Ag terminiertem Si(111) verglichen. Hier zeigen sich große Ähnlichkeiten, die auf eine ähnliche atomare Struktur hindeuten und zeigen, dass Ag Atome für die Ausbildung der Oberflächenstruktur während des Wachstums der Si-Lagen verantwortlich sind. Die chemischen und physikalischen Eigenschaften dieser Struktur bestärken zusätzlich diese Äquivalenz.
|
3 |
Vibrational properties of epitaxial silicene on Ag(111)Solonenko, Dmytro Ihorovych 10 July 2017 (has links)
This dissertation works out the vibrational properties of epitaxial silicene, which was discovered by Vogt et al. in 2012 by the epitaxial synthesis on the silver substrate. Its two-dimensional (2D) character is modified in comparison to the free-standing silicene due to its epitaxial nature, since the underlying substrate alters the physical properties of silicene as a result of the strong hybridization of the electronic levels of the substrate and adlayer. The growth of silicene layers is complicated by the sensitivity of the Si structures to the experimental conditions, mainly temperature, resulting in the formation of several seemingly different surface reconstructions. Another Si structure appears on the Ag surface at a supramonolayer coverage. The Raman spectroscopy was utilized to understand the relation between different Si structures and reveal their origin as well as to investigate the phonon-related physical properties of two-dimensional Si sheets.
The central core of this work is the growth and characterization of these 2D silicene monolayers on the Ag (111) surface as well as the formation of silicene multilayer structures. The characterization of these materials was performed using in situ surface-sensitive measurement methods such as Raman spectroscopy and low-energy electron diffraction under ultra-high vacuum conditions due to high chemical reactivity of epitaxial silicene. Additional characterization was done ex situ by means of scanning force microscopy. The experimentally determined spectral signature of the prototypical epitaxial (3x3)/(4x4) silicene structure was confirmed by ab initio calculations, in collaboration with theory groups. The Raman signatures of the other 2D and 3D Si phases on Ag (111) were determined which allowed us to provide a clear picture of their formation depending on the preparation conditions.
The monitoring of the silicene multi-layer growth yielded the vibrational signature of the top layer, reconstructed in a (√3x√3) fashion. It was compared to the inverse, (√3x√3)-Ag/Si(111), system showing the vast amount of similarities, which suggest that the (√3x√3) reconstruction belong to the silver layer. The chemical and physical properties of this surface structure additionally strengthen this equivalence.
The possibility of functionalization of epitaxial silicene was demonstrated via exposure to the atomic hydrogen under UHV conditions. The adsorbed hydrogen covalently bonds to the silicene lattice modifying it and reducing its symmetry. As shown by Raman spectroscopy, such modification can be reversed by thermal desorption of hydrogen. The excitation-dependent Raman measurements also suggest the change of the electronic properties of epitaxial silicene upon hydrogenation suggesting that its originally semi-metallic character is modified into a semiconducting one. / Die experimentellen Forschungsarbeiten zum Thema Silicen basieren auf den 2012 von Vogt et al. durchgeführten Untersuchungen zu dessen Synthese auf Silbersubstraten. Diese Untersuchungen lieferten die Grundlage, auf der zweidimensionales (2D) epitaktisches Silicen sowie weitere 2D Materialien untersucht werden konnten. In den anfänglichen Arbeiten konnte dabei gezeigt werden, dass sich die Eigenschaften von epitaktischem Silicen gegenüber den theoretischen Vorhersagen von frei-stehendem Silicen unterscheiden. Darüber hinaus verkomplizieren sich die experimentellen Untersuchungen dieses 2D Materials, da auf dem Ag(111) Wachstumssubstrat sechs verschiedene 2D Si Polytypen existieren. Eine detaillierte Darstellung dieser Untersuchungen findet sich in dem einführenden Kapitel der vorliegen Promotionsschrift. Der zentrale Kern dieser Arbeit beschäftigt sich mit dem Wachstum und der Charakterisierung dieser 2D Silicen Monolagen auf Ag(111) Oberflächen sowie der Bildung von Silicen- Multilagen Strukturen. Die Charakterisierung dieser Materialien wurde in situ mit oberflächenempfindlichen Messmethoden wie der Raman Spektroskopie und der niederenergetischen Elektronenbeugung unter Ultrahochvakuum-Bedingungen durchgeführt. Eine zusätzliche Charakterisierung erfolgte ex situ mittels Raster-KraftMikroskopie. Die experimentell bestimmte spektrale Raman-Signatur der prototypischen epitaktischen (3x3)/(4x4) Silicene Struktur wurde durch ab initio Rechnungen, in Zusammenarbeit mit Theoriegruppen, bestätigt. Durch diesen Vergleich wir die zweidimensionale Natur der epitaktischen Silicen-Schichten vollständig bestätigt, wodurch andere mögliche Interpretationen ausgeschlossen werden können. Darüber hinaus wurden die Ramans-Signaturen der weiteren 2D und 3D Siliziumphasen auf Ag(111) bestimmt, wodurch sich ein klares Bild der Bildung dieser Strukturen in Abhängigkeit von den Präparationsbedingungen ergibt. Um die Möglichkeit der Funktionalisierung von Silicen und der weiteren 2D Si Strukturen zu testen, wurden diese unter UHV Bedingungen atomarem Wasserstoff ausgesetzt. Durch die Bindung zu den Wasserstoffamen wird die kristalline Struktur der Silicen-Schichten modifiziert und die Symmetrie reduziert, was sich deutlich in der spektralen Raman-Signatur zeigt. Wie mittels Raman Spektroskopie gezeigt werden konnte, kann diese Modifikation durch thermische Desorption des Wasserstoffs rückgängig gemacht werden, ist also reversibel. Raman Messungen mit verschiedenen Anregungswellenlängen deuten darüber hinaus auf die Änderung der elektronischen Eigenschaften der Silicen-Schichten durch die Hydrierung hin. Der ursprüngliche halbmetallische Charakter der epitaktischen Silicen-Schicht geht möglicherweise in einen halbleitenden Zustand über. Das Wachstum von Silicen Multilagen wurde ebenfalls mit in situ Ramanspektroskopie verfolgt. Die sich dabei ergebene Raman-Signatur wurde mit der Raman-Signatur von Ag terminiertem Si(111) verglichen. Hier zeigen sich große Ähnlichkeiten, die auf eine ähnliche atomare Struktur hindeuten und zeigen, dass Ag Atome für die Ausbildung der Oberflächenstruktur während des Wachstums der Si-Lagen verantwortlich sind. Die chemischen und physikalischen Eigenschaften dieser Struktur bestärken zusätzlich diese Äquivalenz.
|
Page generated in 0.0965 seconds