• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geospatial metadata and an ontology for water observations data

Marney, Katherine Anne 03 September 2009 (has links)
Work has been successfully performed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) to synthesize the nation’s hydrologic data. Through the building of a national Hydrologic Information System, the organization has demonstrated a successful structure which promotes data sharing. While data access has been improved by the work completed thus far, the resources available for discovering relevant datasets are still lacking. In order to improve data discovery among existing data services, a model for the storage and organization of metadata has been created. This includes the creation of an aggregated table of relevant metadata from any number of sources, called a Master SeriesCatalog. Using this table, data layers are easily organized based on themes, therefore simplifying data discovery based on concepts. / text
2

A Mexican case study for world water online

Espinoza Dávalos, Gonzalo Enrique 19 July 2012 (has links)
World Water Online is a global system of hydrologic data. It is an integration of geospatial and temporal information across spatial scales: global, national, regional and local. This global water information system has no parallel, and its scope would be extended with the active participation of the global water community. Its consolidation depends on the accessibility of countries’ databases through the system. In this study, a test case using Mexican data within World Water Online is created, applying the CUAHSI framework, web services and standards. The resulting Mexican-HIS unifies the water information for the nation regardless of data provider, improving storage practices and allowing additional querying and retrieving functionalities: World Water Online is a source of information and also a supplier of web-based processing services. In the second part of this study, a precipitation-runoff analysis using the data in the system is performed. / text
3

A services stack architectural model for the CUAHSI-HIS

Seppi, James Adam 14 February 2011 (has links)
The Hydrologic Information System Project of the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) has successfully created a large-scale prototype Hydrologic Information System (HIS). This system catalogs and provides access to over 23 million time series of hydrologic data, which are distributed across the United States at various academic, research, and governmental data providers. The service-oriented architecture that enables the HIS comprises distributed hydrologic data servers, a centralized series catalog, and various client software applications, and is supported by WaterML, a standardized language for transmission of hydrologic data. The current architectural model, termed the Network-Observations Model, of the HIS relies on a searchable central catalog of series metadata. Harvesting series metadata from large federal data providers, such as the USGS, EPA, and NCDC, has proven a laborious undertaking and involves custom database migration tools. This time-consuming harvesting task, coupled with a multitude of custom-coded solutions at the central series catalog has led to concerns with the long-term sustainability of the current architectural model. A new architectural model, termed the Services Stack Model, is proposed in this thesis. In the proposed model, a catalog of services metadata, rather than of series metadata is used to connect hydrologic data consumers with data providers. Internationally-recognized web service and data encoding standards, including the upcoming WaterML2.0 specification, from the Open Geospatial Consortium are used as the backbone of the new model. The proposed model will hopefully lead to greater acceptance of the CUAHSI-HIS, and result in increased sustainability and reduced maintenance of the system in the long-term. / text
4

A hydrologic information system for water availability modeling

Siler, Clark D., 1978- 12 October 2011 (has links)
Texas water availability modeling has undergone a transition from paper-based documents to digital databases and GIS maps. This results in many discrete components: a water rights database, a GIS database, a monthly flow simulation model to quantify water availability, and an environmental flows assessment to quantify how much water should remain in Texas rivers. This dissertation examines how these components can be connected by a conceptual model and automated as a Hydrologic Information System (HIS) for Texas water availability modeling using custom GIS toolsets and data processing. The HIS is defined using three tools that combine components of the conceptual model. These tools automate the processes of water availability modeling and synthesize the conceptual model components. This dissertation also explores how desktop-based Texas water availability modeling can be informed by web services and how a services-oriented architecture for water availability modeling could be constructed. Existing hydrologic information models are used as a guide in creating an Arc Hydro Web information model as a framework for this activity. This model is demonstrated using scenarios highlighting its capabilities for representing desktop and web-informed analyses. The functionality of Arc Hydro Web is demonstrated via a use case of five associated component studies in the San Jacinto Basin illustrating the functionality of the HIS of water availability modeling in Texas. The shift from desktop-based analyses to web-enabled processing enables certain aspects of water availability modeling being moved to cloud computing. The network aspects of the Texas water availability modeling environment can be informed by web services using a centrally-stored network, negating the current system of having nearly-identical duplicate networks. This could foster communication and sharing of water resources models. It is recommended that Arc Hydro Web be implemented, that aspects of water availability modeling processing become web-enabled through the combination of web processing and web services, and that additional services be developed to meet the needs of web-based water availability modeling. / text
5

The Long Tail of hydroinformatics : implementing biological and oceanographic information in hydrologic information systems

Hersh, Eric Scott 01 February 2013 (has links)
Hydrologic Information Systems (HIS) have emerged as a means to organize, share, and synthesize water data. This work extends current HIS capabilities by providing additional capacity and flexibility for marine physical and chemical observations data and for freshwater and marine biological observations data. These goals are accomplished in two broad and disparate case studies – an HIS implementation for the oceanographic domain as applied to the offshore environment of the Chukchi Sea, a region of the Alaskan Arctic, and a separate HIS implementation for the aquatic biology and environmental flows domains as applied to Texas rivers. These case studies led to the development of a new four-dimensional data cube to accommodate biological observations data with axes of space, time, species, and trait, a new data model for biological observations, an expanded ontology and data dictionary for biological taxa and traits, and an expanded chain-of-custody approach for improved data source tracking. A large number of small studies across a wide range of disciplines comprise the “Long Tail” of science. This work builds upon the successes of the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) by applying HIS technologies to two new Long Tail disciplines: aquatic biology and oceanography. In this regard this research improves our understanding of how to deal with collections of biological data stored alongside sensor-based physical data. Based on the results of these case studies, a common framework for water information management for terrestrial and marine systems has emerged which consists of Hydrologic Information Systems for observations data, Geographic Information Systems for geographic data, and Digital Libraries for documents and other digital assets. It is envisioned that the next generation of HIS will be comprised of these three components and will thus actually be a Water Information System of Systems. / text

Page generated in 0.1408 seconds