Spelling suggestions: "subject:"hyperbolic eometry"" "subject:"hyperbolic ceometry""
11 |
Canonical quaternion algebra of the Whitehead link complementPalmer, Rebekah, 0000-0002-1240-6759 January 2023 (has links)
Let ΓM be the fundamental group of a knot or link complement M. The discrete faithful representation of ΓM into PSL2(C) has an associated quaternion algebra. We can extend this notation to other representations, which are encoded by the character variety X(ΓM). The generalization is the canonical quaternion algebra and can be used to find unifying features of irreducible representations, such as the splitting behavior of their associated quaternion algebras. Within this dissertation, we will determine properties of the canonical quaternion algebra for the Whitehead link complement and explore how the algebra can descend to quaternion algebras of the Dehn (d, m)-surgeries thereon. / Mathematics
|
12 |
A Comparison of the Analytic Developments of the Hyperbolic Non-Euclidean Geometries of Nicholas Lobachevski and Janos BolyaiCrider, James E. January 1951 (has links)
No description available.
|
13 |
A Comparison of the Analytic Developments of the Hyperbolic Non-Euclidean Geometries of Nicholas Lobachevski and Janos BolyaiCrider, James E. January 1951 (has links)
No description available.
|
14 |
Poincaré disc models in hyperbolic geometryBouboulis, Anna Marie 12 December 2013 (has links)
This report discusses two examples of the use of Poincare disc models and their different relationships to Euclidean geometry. The topics include light reflection in hyperbolic geometry and the Hyperbolic Pythagorean Theorem; all in relation to the Poincare unit disc and Poincare upper half plane model. / text
|
15 |
ONE-CUSPED CONGRUENCE SUBGROUPS OF SO(d, 1; Z)Choi, Benjamin Dongbin January 2022 (has links)
The classical spherical and Euclidean geometries are easy to visualize and correspond to spaces with constant curvature 0 and +1 respectively. The geometry with constant curvature −1, hyperbolic geometry, is much more complex. A powerful theorem of Mostow and Prasad states that in all dimensions at least 3, the geometry of a finite-volume hyperbolic manifold (a space with local d-dimensional hyperbolic geometry) is determined by the manifold's
fundamental group (a topological invariant of the manifold). A cusp is a part of a finite-volume hyperbolic manifold that is infinite but has finite volume (cf. the surface of revolution of a tractrix has finite area but is infinite). All non-compact hyperbolic manifolds have cusps, but only finitely many of them. In the fundamental group of such a manifold, each cusp corresponds to a cusp subgroup, and each cusp subgroup is associated to a point on the boundary of H^d, which can be identified with the (d − 1)-sphere. It is known that there are many one-cusped two- and three-dimensional hyperbolic manifolds. This thesis studies restrictions on the existence of 1-cusped hyperbolic d-dimensional manifolds for d ≥ 3. Congruence subgroups belong to a special class of hyperbolic manifolds called arithmetic manifolds. Much is known about arithmetic hyperbolic 3-
manifolds, but less is known about arithmetic hyperbolic manifolds of higher
dimensions. An important infinite class of arithmetic d-manifolds is obtained
using SO(n, 1; Z), a subset of the integer matrices with determinant 1. This is known to produce 1-cusped examples for small d. Taking special congruence conditions modulo a fixed number, we obtain congruence subgroups of SO(n, 1; Z) which also have cusps but possibly more than one. We ask what congruence subgroups with one cusp exist in SO(n, 1; Z). We consider the prime congruence level case, then generalize to arbitrary levels. Covering space theory implies a relation between the number of cusps and the image of a cusp in the mod p reduced group SO(d+ 1, p), an analogue of the classical rotation Lie group. We use the sizes of maximal subgroups of groups SO(d + 1, p), and the maximal subgroups' geometric actions on finite vector spaces, to bound the number of cusps from below. Let Ω(d, 1; Z) be the index 2 subgroup in SO(d, 1; Z) that consists of all elements of SO(d, 1; Z) with spinor norm +1. We show that for d = 5 and d ≥ 7 and all q not a power of 2, there is no 1-cusped level-q congruence subgroup of Ω(d, 1; Z). For d = 4, 6 and all q not of the form 2^a3^b, there is no 1-cusped level-q congruence subgroup of Ω(d, 1; Z). / Mathematics
|
16 |
Hyperbolic Geometry and Hierarchical Representation LearningGrisaitis, William 01 January 2024 (has links) (PDF)
This thesis explores the application of hyperbolic geometry to deep variational autoencoders (VAEs) for learning low-dimensional latent representations of data. Hyperbolic geometry has gained increasing attention in machine learning due to its potential to embed hierarchical data structures in continuous, differentiable manifolds. We extend previous work investi- gating the Poincaré ball model of hyperbolic geometry and its integration into VAEs. By evaluating hyperbolic VAEs on the MNIST handwritten digit dataset and a single-cell RNA sequencing dataset of metastatic melanoma, we assess whether the inductive bias and math- ematical properties of hyperbolic spaces result in improved data representations compared to standard Euclidean VAEs, especially for single-cell RNA sequencing data. Our findings demonstrate the potential advantages of leveraging hyperbolic geometry for representation learning, while also highlighting some challenges. This work contributes to the growing field of geometric deep learning and provides insights for future research on non-Euclidean approaches to representation learning.
|
17 |
On spaces of special elliptic n-gons / Sobre espaços de n-ágonos elípticos especiaisFranco, Felipe de Aguilar 01 August 2018 (has links)
We study relations between special elliptic isometries in the complex hyperbolic plane. A special elliptic isometry can be seen as a rotation around a fixed axis (a complex geodesic). Such an isometry is determined by specifying a nonisotropic point p (the polar point to the fixed axis) and a unitary complex number a, the angle of the isometry. Any relation between special elliptic isometries with rational angles gives rise to a representation H(k1;:::;kn) → PU(2;1), where H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1> = 1; rkii = 1 ⟩ and PU(2;1) stands for the group of orientation-preserving isometries of the complex hyperbolic plane. We denote by Rpα the special elliptic isometry determined by the nonisotropic point p and by the unitary complex number α. Relations of the form Rpnαn : : :Rp1α1 = 1 in PU(2;1), called special elliptic n-gons, can be modified by short relations known as bendings: given a product RqβRpα, there exists a one-parameter subgroup B : R → SU(2;1) such that B(s) is in the centralizer of Rqβ Rpα and RB(s)qβRB(s)pα = RqβRB(s)pα for every s ∈ R. Then, for each i = 1,...,n-1, we can change Rpi+1αi+1Rpiαi by RB(s)pi+1αi+1RB(s)piαi obtaining a new n-gon. We prove that the generic part of the space of pentagons with fixed angles and signs of points is connected by means of bendings. Furthermore, we describe certain length 4 relations, called f -bendings, and prove that the space of pentagons with fixed product of angles is connected by means of bendings and f -bendings. / Neste trabalho, estudamos relações entre isometrias elípticas especiais no plano hiperbólico complexo. Uma isometria elíptica especial pode ser vista como uma rotação em torno de um eixo fixo (uma geodésica complexa). Tal isometria é determinada especificando-se um ponto não-isotrópico p (o ponto polar do eixo fixo) bem como um número complexo unitário a (o ângulo da isometria). Qualquer relação entre isometrias elípticas especiais com ângulos racionais dá origem a uma representação H(k1;:::;kn) → PU(2;1), onde H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1 = 1; rkii = 1 ⟩ e PU(2;1) é o grupo de isometrias que preservam a orientação do plano hiperbólico complexo. Denotamos por Rpα a isometria elíptica especial determinada pelo ponto não-isotrópico p e pelo complexo unitário α. Relações da forma Rpnαn : : :Rp1α1 = 1 em PU(2;1), chamadas n-ágonos elípticos especiais, podem ser modificadas a partir de relações curtas conhecidas como bendings: dado um produto RqβRpα, existe um subgrupo uniparamétrico B : R → SU(2;1) tal que B(s) está no centralizador de RqβRpα e RB(s)qβRB(s)pα = RqβRpα para todo s ∈ R. Assim, para cada i = 1; : : : ;n-1, podemos mudar Rpi+1α+1Rpiαi por RB(s)pi+1α+1RB(s)piα+1RB(s)piαi obtendo um novo n-ágono. Provamos que a parte genérica do espaço de pentágonos com ângulos e sinais de pontos fixados é conexa por meio de bendings. Além disso, descrevemos certas relações de comprimento 4, os f -bendings, e provamos que o espaço de pentágonos com produto de ângulos fixado é conexo por meio de bendings e f -bendings.
|
18 |
On spaces of special elliptic n-gons / Sobre espaços de n-ágonos elípticos especiaisFelipe de Aguilar Franco 01 August 2018 (has links)
We study relations between special elliptic isometries in the complex hyperbolic plane. A special elliptic isometry can be seen as a rotation around a fixed axis (a complex geodesic). Such an isometry is determined by specifying a nonisotropic point p (the polar point to the fixed axis) and a unitary complex number a, the angle of the isometry. Any relation between special elliptic isometries with rational angles gives rise to a representation H(k1;:::;kn) → PU(2;1), where H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1> = 1; rkii = 1 ⟩ and PU(2;1) stands for the group of orientation-preserving isometries of the complex hyperbolic plane. We denote by Rpα the special elliptic isometry determined by the nonisotropic point p and by the unitary complex number α. Relations of the form Rpnαn : : :Rp1α1 = 1 in PU(2;1), called special elliptic n-gons, can be modified by short relations known as bendings: given a product RqβRpα, there exists a one-parameter subgroup B : R → SU(2;1) such that B(s) is in the centralizer of Rqβ Rpα and RB(s)qβRB(s)pα = RqβRB(s)pα for every s ∈ R. Then, for each i = 1,...,n-1, we can change Rpi+1αi+1Rpiαi by RB(s)pi+1αi+1RB(s)piαi obtaining a new n-gon. We prove that the generic part of the space of pentagons with fixed angles and signs of points is connected by means of bendings. Furthermore, we describe certain length 4 relations, called f -bendings, and prove that the space of pentagons with fixed product of angles is connected by means of bendings and f -bendings. / Neste trabalho, estudamos relações entre isometrias elípticas especiais no plano hiperbólico complexo. Uma isometria elíptica especial pode ser vista como uma rotação em torno de um eixo fixo (uma geodésica complexa). Tal isometria é determinada especificando-se um ponto não-isotrópico p (o ponto polar do eixo fixo) bem como um número complexo unitário a (o ângulo da isometria). Qualquer relação entre isometrias elípticas especiais com ângulos racionais dá origem a uma representação H(k1;:::;kn) → PU(2;1), onde H(k1;:::;kn) : = ⟨ r1; : : : ; rn ∣ rn : : : r1 = 1; rkii = 1 ⟩ e PU(2;1) é o grupo de isometrias que preservam a orientação do plano hiperbólico complexo. Denotamos por Rpα a isometria elíptica especial determinada pelo ponto não-isotrópico p e pelo complexo unitário α. Relações da forma Rpnαn : : :Rp1α1 = 1 em PU(2;1), chamadas n-ágonos elípticos especiais, podem ser modificadas a partir de relações curtas conhecidas como bendings: dado um produto RqβRpα, existe um subgrupo uniparamétrico B : R → SU(2;1) tal que B(s) está no centralizador de RqβRpα e RB(s)qβRB(s)pα = RqβRpα para todo s ∈ R. Assim, para cada i = 1; : : : ;n-1, podemos mudar Rpi+1α+1Rpiαi por RB(s)pi+1α+1RB(s)piα+1RB(s)piαi obtendo um novo n-ágono. Provamos que a parte genérica do espaço de pentágonos com ângulos e sinais de pontos fixados é conexa por meio de bendings. Além disso, descrevemos certas relações de comprimento 4, os f -bendings, e provamos que o espaço de pentágonos com produto de ângulos fixado é conexo por meio de bendings e f -bendings.
|
19 |
At the Intersection of Math and Art: An Exploration of the Fourth Dimension, Non-Euclidean Geometry, and ChaosKnapp, Kathryn 01 January 2016 (has links)
This thesis examines the intersection of math and art by focusing on three specific branches of math: the fourth dimension, non-Euclidean geometry, and chaos and fractals. Different genres of art interact with each of these branches of math. The influence of the fourth dimension can easily be seen in Cubism and Russian Constructivism. Non-Euclidean geometry guided some of M.C. Escher’s work, and it inspired the Crochet Coral Reef project. Chaos and fractals can be found in art and architecture throughout history, but Vincent van Gogh and Jackson Pollock are notable examples of artists who used chaos in their work. Some artists incorporate math into their work in a rigorous, exacting manner, while others take inspiration from a general concept and provide a more abstract interpretation. Regardless of mathematical accuracy, mathematically inspired art can provide a greater understanding of mathematical concepts.
|
20 |
Measuring Effectiveness of Address Schemes for AS-level GraphsZhuang, Yinfang 01 January 2012 (has links)
This dissertation presents measures of efficiency and locality for Internet addressing schemes.
Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today's Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate.
Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?''
To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal" the current Internet is, we assign prefixes to ASes ``from scratch" in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence.
Next we propose another metric that in some sense quantifies the ``efficiency" of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes.
|
Page generated in 0.0751 seconds