• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 3
  • Tagged with
  • 14
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws II

De-Xing, Kong, Hui, Yao January 2003 (has links)
In this paper, by a new constructive method, the authors reprove the global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws with linearly degenerate fields. It is shown that the system with nonlinear boundary conditions is globally exactly boundary controllable in the class of piecewise C¹ functions. In particular, the authors give the optimal control time of the system. Finally, a new application is also given.
2

Well-posedness results for a class of complex flow problems in the high Weissenberg number limit

Wang, Xiaojun 22 May 2012 (has links)
For simple fluids, or Newtonian fluids, the study of the Navier-Stokes equations in the high Reynolds number limit brings about two fundamental research subjects, the Euler equations and the Prandtl's system. The consideration of infinite Reynolds number reduces the Navier-Stokes equations to the Euler equations, both of which are dealing with the entire flow region. Prandtl's system consists of the governing equations of the boundary layer, a thin layer formed at the wall boundary where viscosity cannot be neglected. In this dissertation, we investigate the upper convected Maxwell(UCM) model for complex fluids, or non-Newtonian fluids, in the high Weissenberg number limit. This is analogous to the Newtonian fluids in the high Reynolds number limit. We present two well-posedness results. The first result is on an initial-boundary value problem for incompressible hypoelastic materials which arise as a high Weissenberg number limit of viscoelastic fluids. We first assume the stress tensor is rank-one and develop energy estimates to show the problem is locally well-posed. Then we show the more general case can be handled in the same spirit. This problem is closely related to the incompressible ideal magneto-hydrodynamics (MHD) system. The second result addresses the formulation of a time-dependent elastic boundary layer through scaling analysis. We show the well-posedness of this boundary layer by transforming to Lagrangian coordinates. In contrast to the possible ill-posedness of Prandtl's system in Newtonian fluids, we prove that in non-Newtonian fluids the stress boundary layer problem is well-posed. / Ph. D.
3

Um sistema hiperbólico e o custo de controlabilidade para o sistema de Stokes via método da transmutação

Sousa Neto, Jose Ribeiro de 24 April 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-01T15:56:45Z No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:58:15Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) / Made available in DSpace on 2017-09-01T15:58:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) Previous issue date: 2017-04-24 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we studied the controllability cost for the Stokes system. Using the transmutation method, we show that the cost of driving the Stokes system to equilibrium at time T, is of order eC/T as T → 0+, which is of the same order of controllability of heat equation. For this, we have proved a exact controllability for the hyperbolic system with resistence term, by considering a geometric hypothesis on the control region. / Neste trabalho nos dedicamos a estudar o custo de controlabilidade para o sistema de Stokes. Usando o m´etodo da transmuta¸c˜ao, mostraremos que o custo de dirigir o sistema de Stokes ao equil´ıbrio no tempo T ´e de ordem eC/T , quando T → 0+, isto ´e, da mesma ordem de controlabilidade da equa¸c˜ao do calor. Para tornar isso poss´ıvel, provaremos um resultado de controlabilidade exata para o sistema hiperb´olico com termo de resistˆencia, o que ser´a feito com base em hip´oteses sobre a regi˜ao de controle.
4

Thermodynamic formalism, statistical properties and multifractal analysis of non-uniformly hyperbolic systems

Wang, Tianyu 20 October 2021 (has links)
No description available.
5

Modelagem e simulação da propagação de ondas em barras não homogêneas envolvendo materiais elásticos não lineares. / Numerical simulation of the dynamical response of a nonlinear elástic rod composed by two materials.

Cleciano Berlando Miranda de Oliveira 24 August 2012 (has links)
O objetivo deste trabalho é tratar da simulação do fenômeno de propagação de ondas em uma haste heterogênea elástico, composta por dois materiais distintos (um linear e um não-linear), cada um deles com a sua própria velocidade de propagação da onda. Na interface entre estes materiais existe uma descontinuidade, um choque estacionário, devido ao salto das propriedades físicas. Empregando uma abordagem na configuração de referência, um sistema não-linear hiperbólico de equações diferenciais parciais, cujas incógnitas são a velocidade e a deformação, descrevendo a resposta dinâmica da haste heterogénea. A solução analítica completa do problema de Riemann associado são apresentados e discutidos. / The objective of this work is the simulation of the wave propagation phenomenon in a heterogeneous elastic rod, composed by two distinct materials (a linear and a non-linear one), each of them with its own wave propagation speed. At the interface between these materials there is a discontinuity, a stationary shock, due to the jump of the physical properties. Employing a reference configuration approach, a nonlinear hyperbolic system of partial differential equations, whose unknowns are the velocity and the strain, describing the dynamical response of the heterogeneous rod. The complete analytical solution of the associated Riemann problem is presented and discussed.
6

Modelagem e simulação da propagação de ondas em barras não homogêneas envolvendo materiais elásticos não lineares. / Numerical simulation of the dynamical response of a nonlinear elástic rod composed by two materials.

Cleciano Berlando Miranda de Oliveira 24 August 2012 (has links)
O objetivo deste trabalho é tratar da simulação do fenômeno de propagação de ondas em uma haste heterogênea elástico, composta por dois materiais distintos (um linear e um não-linear), cada um deles com a sua própria velocidade de propagação da onda. Na interface entre estes materiais existe uma descontinuidade, um choque estacionário, devido ao salto das propriedades físicas. Empregando uma abordagem na configuração de referência, um sistema não-linear hiperbólico de equações diferenciais parciais, cujas incógnitas são a velocidade e a deformação, descrevendo a resposta dinâmica da haste heterogénea. A solução analítica completa do problema de Riemann associado são apresentados e discutidos. / The objective of this work is the simulation of the wave propagation phenomenon in a heterogeneous elastic rod, composed by two distinct materials (a linear and a non-linear one), each of them with its own wave propagation speed. At the interface between these materials there is a discontinuity, a stationary shock, due to the jump of the physical properties. Employing a reference configuration approach, a nonlinear hyperbolic system of partial differential equations, whose unknowns are the velocity and the strain, describing the dynamical response of the heterogeneous rod. The complete analytical solution of the associated Riemann problem is presented and discussed.
7

Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre / Asymptotic analysis of first-order quasilinear hyperbolic systems

Wasiolek, Victor 29 May 2015 (has links)
Les systèmes hyperboliques interviennent dans de nombreuses branches des sciences : théorie cinétique, mécanique des fluides non visqueux, magnéto hydrodynamique, dynamique des gaz non visqueux, trafic routier, flux d’une rivière ou d’un glacier, processus de sédimentation, processus d’échanges chimiques, etc. Et souvent, les systèmes qui régissent ces évènements font intervenir des petits paramètres, dont l’étude asymptotique permet d’envisager des simplifications mathématiques et/ou informatiques notoires. L’existence locale et l’existence globale de solutions, uniformément par rapport à ces paramètres, sont des questions fondamentales. Cette thèse regroupe à la fois des résultats généraux sur l’existence locale uniforme de solutions pour des systèmes hyperboliques quasi-linéaires du premier ordre ; et sur l’existence globale uniforme de solutions autour d’un équilibre constant pour ces mêmes systèmes. Le cas du système d’Euler-Maxwell ne satisfaisant pas les conditions requises pour l’existence uniforme globale, nous le traitons à part. / Hyperbolic systems arise in a large field of sciences : kinetic theory, inviscid reactive flow, magnetohydrodynamics, inviscid gas dynamics, traffic flow, river or glacier flow, sedimentation processes, chemical exchange processes, etc. In these kind of systems, small paramaters often appear, and an asymptotic study may lead to mathematical or computational simplifications. One fundamental problem that we may work on is local and global existence of solutions for these systems, uniformly with respect to these parameters. This Ph.D. thesis includes, on one hand, general results on uniform local existence of solutions for first order quasi-linear hyperbolic systems ; and on the other hand, results on uniform global existence of solutions near constant equilibriums for these same systems. In the case of Euler-Maxwell systems, required conditions are not fulfilled for uniform global existence, then we treat it separately.
8

Modeling Waves in Linear and Nonlinear Solids by First-Order Hyperbolic Differential Equations

Yang, Lixiang 20 July 2011 (has links)
No description available.
9

Problèmes d’interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique / Problèmes d’interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique

Aguillon, Nina 29 September 2014 (has links)
Dans ce travail, nous nous intéressons à deux problèmes de la théorie des systèmes hyperboliques faisant intervenir des interfaces. Le premier concerne des modèles de couplages entre un fluide compressible et une particule ponctuelle et le second concerne la capture numérique précise des chocs, ces discontinuités qui apparaissent dans les solutions des systèmes hyperboliques.Sur la première thématique, nous commençons par introduire les différents modèles, dans lesquels la particule et le fluide interagissent à travers une force de frottement qui tend à rapprocher leurs vitesses. Le couplage est singulier car il fait intervenir le produit d’une fonction discontinue par une mesure de Dirac. On peut toutefois définir précisément le système en voyant la particule comme une interface à travers laquelle des relations liant les propriétés du fluide et celle de la particule sont imposées. Lorsque le fluide suit une équation de Burgers, nous démontrons la convergence d’une classe de schéma numérique, et nous obtenons l’existence d’une solution au problème de Cauchy pour une donnée initiale à variation totale bornée. Dans le cas plus complexe où le fluide est décrit par les équa- tions d’Euler isothermes, on prouve l’existence et l’unicité d’une solution autosemblable au problème de Riemann lorsque la particule est immobile. Des simulations numériques sont également présentées.La dernière partie de la thèse est consacrée à la construction de schémas non diffusifs pour les systèmes hyperboliques. Ces schémas, de type volumes finis, sont construits pour être exact lorsque la donnée initiale est un choc isolé. Ils sont basé sur une reconstruction discontinue de la solution au début de chaque itération en temps, dans le but de reconstituer des chocs à l’intérieur de certaines cellules du maillage. Cette stratégie mène à des schémas très peu diffusifs qui, lorsque l’opérateur de reconstruction est bien choisi, approchent correctement les solutions de cas tests problématiques (chocs lents, chocs forts, réflexions pour la dynamique des gaz, chocs non classiques pour les systèmes qui ne sont pas vraiment non linéaires). / In this work, we study two problems concerning hyperbolic systems involving interfaces. The first one concerns the study of models of coupling between a compressible fluid and a pointwise particle. The second one deals with the sharp numerical approximation of shocks, which are discontinuities that appear in the solutions of hyperbolic systems.In the first two parts of the manuscript, we introduce different models of fluid-particle couplings. The fluid and the particle interact on each other through a drag force, which brings their velocities closer to one another. The coupling is singular because it can be written as the product of a discontinuous function by a Dirac measure. However, the system can be precisely defined as follows. The particle is seen as an interface through which interface conditions linking the properties of the fluid with those of the particle are imposed. When the fluid follows the compressible Burgers equations, we prove the convergence of a family of finite volume schemes and obtain the existence of a solution when the initial data has total bounded variation. In the more difficult case where the fluid is described by the isothermal Euler equations, we prove the existence and uniqueness of a selfsimilar solution to the Riemann problem, when the particle is motionless. Numerical experiments are also presented.In the last part of this work, we build non diffusive numerical schemes for different hyperbolic systems. These finite volume schemes are built to be exact when the initial data is an isolated shock. They are based on a discontinuous reconstruction of the solution at the beginning of each time step, in order to reconstruct shocks inside some specific cells of the mesh. The schemes we present have a very low numerical diffusion and, when the reconstruction operator is well chosen, they are able to correctly approximate the solution on various problematic test cases. These cases include slowly moving shocks, strong shocks and shock reflections for gas dynamics, as well as the apparition of nonclassical shocks for systems that are not truely nonlinear.
10

Počítačové modelování transportu mozkomíšní tekutiny / Numerical simulation of cerebrospinal fluid transport

Žáček, Petr January 2012 (has links)
Modelling of cerebrospinal fluid flow is important for understanding its influence on central nervous system, especially spinal cord. One of the reasons for its study is a disease called syringomyelia that probably develops as a result of severance of neural pathways by bubbles emerging during the propagation of pressure (expan- sion) disturbances through spinal cord and its surroundings. It is characterized by fluid-filled cavities in spinal cord. In this thesis, a model of fluid-filled co-axial elastic tubes is proposed that can help us simulate pressure disturbances propa- gation through spinal cord including its interactions and possible increase as the result of interferences or reflection. We derive quasi-one-dimensional governing equations in the form of nonlinear hyperbolic system of conservational laws and with its numerical solution by two-step Lax-Wendroff method with added artifi- cial viscosity we can quantitatively estimate almost twofold increase of pressure difference. 1

Page generated in 0.0554 seconds