• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 49
  • 5
  • Tagged with
  • 130
  • 56
  • 54
  • 49
  • 31
  • 28
  • 25
  • 23
  • 20
  • 19
  • 19
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contrôle de systèmes hyperboliques par analyse Lyapunov / Control of Hyperbolic Systems by Lyapunov Analysis

Lamare, Pierre-Olivier 28 September 2015 (has links)
Dans cette thèse nous avons étudié différents aspects pour le contrôle de systèmes hyperboliques.Tout d'abord, nous nous sommes intéressés à des systèmes hyperboliques à commutations. Cela signifie qu'il existe une interaction entre une dynamique continue et une dynamique discrète. Autrement dit, il existe différents modes dans lesquels peut évoluer la dynamique continue: ces modes sont dictés par la dynamique discrète. Ce changement de mode peut être contrôlé (dans le cas d'une boucle fermée), ou non-contrôlé (dans le cas d'une boucle ouverte). Nous nous sommes intéressés au premier cas. Par une analyse Lyapunov nous avons construit trois règles de commutations capables de stabiliser le système. Nous avons montré comment modifier deux d'entre elles pour obtenir des propriétés de robustesse et de stabilité entrée-état. Ces règles de commutations ont été testées numériquement.Ensuite, nous avons considéré la génération de trajectoire pour des systèmes hyperboliques linéaires 2x2 par backstepping. L'étape suivante a été de considérer une action Proportionnelle-Intégrale pour stabiliser la solution du système autour de la trajectoire de référence. Pour cela nous avons construit une fonction Lyapunov non-diagonale. Nous avons montré que l'action intégrale est capable de rejeter des erreurs distribuées et frontières.Enfin, nous avons considéré des aspects numériques pour l'analyse Lyapunov. Les conditions pour la stabilité et la conception de contrôleurs obtenues par des fonctions de Lyapunov quadratiques font intervenir une infinité d'inégalités matricielles. Nous avons montré que cette complexité peut être réduite en considérant une sur-approximation polytopique de ces contraintes.Les résultats obtenus ont été illustrés par des exemples académiques et des systèmes dynamiques physiques (comme les équations de Saint-Venant et les équations de Aw-Rascle-Zhang). / In this thesis we have considered different aspects for the control of hyperbolic systems.First, we have studied switched hyperbolic systems. They contain an interaction between a continuous and a discrete dynamics. Thus, the continuous dynamics may evolve in different modes: these modes are imposed by the discrete dynamics. The change in the mode may be controlled (in case of a closed-loop system), or may be uncontrolled (in case of an open-loop system). We have focused our interest on the former case. We procedeed with a Lyapunov analysis, and construct three switching rules. We have shown how to modify them to get robustness and ISS properties. We have shown their effectiveness with numerical tests.Then, we have considered the trajectory generation problem for 2x2 linear hyperbolic systems. We have solved it with backstepping. Then, we have considered the tracking problem with a Proportionnal-Integral controller. We have shown that it stabilizes the error system around the reference trajectory with a new non-diagonal Lyapunov function. The integral action has been shown to be able to reject in-domain, as well as boundary disturbances.Finally, we have considered numerical aspects for the Lyapunov analysis. The conditions for the stability and design of controllers by quadratic Lyapunov functions involve an infinity of matrix inequalities. We have shown how to reduce this complexity by polytopic embeddings of the constraints.Many obtained results have been illustrated by academic examples and physically relevant dynamical systems (as Shallow-Water equations and Aw-Rascle-Zhang equations).
32

Event-based control of networks modeled by a class of infinite dimensional systems / Contrôle événementiel des réseaux modélisés par une classe de système de dimension infinie

Espitia Hoyos, Nicolás 22 September 2017 (has links)
Cette thèse propose des contributions sur la commande événementielle pour des réseaux modélisés par une classe des systèmes de dimension infinie. Premièrement nous nous focalisons sur la modélisation et contrôle frontière des réseaux qui sont décrits par des systèmes hyperboliques de lois de conservation. En nous inspirant de modèles macroscopiques dans le cadre des réseaux de communications, nous traitons des systèmes couplés EDP-EDO, dont les noeuds (les serveurs) sont modélisés par des EDO non-linéaires alors que des lignes de transmission sont décrites par des systèmes hyperboliques lorsque des retards peuvent être pris en compte. Pour le système linéarisé resultant, autour d'un point d'équilibre optimal, on effectue aussi bien une analyse de stabilité "Input-to-state stable" que de la synthèse du contrôle pour le gain asymptotique grâce à une analyse de fonction de Lyapunov et une formulation LMI.Ensuite, nous considérons des aspects théoriques de la commande évènementielle aux frontières pour les systèmes hyperboliques. D'un côté, avec cette stratégie de contrôle, nous ciblons la réduction de la consommation d' énergie en traitant les contraintes de communication et de calcul. D' autre part, nous utilisons cette stratégie comme une manière rigoureuse pour échantillonner temporellement lorsqu' on a besoin de mettre en oeuvre les contrôleurs continus sur une plateforme numérique. Une étude mathématique sur l'existence et l' unicité des solutions ainsi que sur les aspects de stabilité est réalisée. / This thesis provides contributions on event-based control of networks model by a class of infinite dimensional systems. We first focus on the modeling and boundary control of networks described by hyperbolic systems of conservation laws. Highly inspired by macroscopic models in communication networks, we deal with a coupled PDE-ODE, where the nodes (servers) are modeled by nonlinear ODEs whereas transmission lines are described by hyperbolic equations when communication delays may be taken into account. For the resulting linearized system around an optimal equilibrium point, Input-to state stability (ISS) analysis as well as asymptotic gain control synthesis are carried out by means of Lyapunov techniques and LMI formulation.We then address some theoretical aspects of event-based boundary control of hyperbolic systems. One one hand, with this computer control strategy, we intend to reduce energy consumption when dealing with communication and computational constraints. On the other hand, we use this strategy as a rigorous way of sampling in time when implementation of continuous time controllers on a digital platform is required. A mathematical study regarding well-posedness of the solutions as well as stability issues is conducted.
33

Nouvelles méthodes numériques pour les écoulements en eaux peu profondes

Beljadid, Abdelaziz January 2015 (has links)
Dans ce projet de recherche, on s’intéresse au développement et à l’évaluation de nouvelles méthodes numériques pour les écoulements peu profonds. De nouvelles techniques de discrétisation spatiales et temporelles des équations sont proposées. Une partie de la thèse est dédiée au développement d’une méthode des volumes finis explicite d’ordre élevé et d’une famille de schémas semi-implicites qui sont efficaces pour la modélisation des processus lents et rapides dans les écoulements océaniques et atmosphériques. La deuxième partie du projet de recherche concerne la construction d’un schéma numérique efficace sans solveur de Riemann pour les écoulements peu profonds avec une topographie variable sur un maillage non structuré. Dans cette partie de la thèse, une nouvelle approche est proposée pour l'analyse de stabilité des schémas numériques non structurés pour les équations en eaux peu profondes. Dans la troisième partie de la thèse, deux schémas de volumes finis sont développés pour les lois de conservation sur des surfaces courbes qui ont un large potentiel d’être appliqués aux écoulements peu profonds sur la sphère. Dans ces cas, les schémas numériques sont développés en adoptant la démarche suivie par Stanley Osher. Cette démarche consiste à utiliser des systèmes hyperboliques simples qui génèrent des phénomènes d'ondes complexes et des solutions qui ont différentes structures. Ces solutions sont très efficaces pour tester les méthodes numériques. Dans notre cas, nous avons utilisé les équations de Burgers qui ont joué un rôle très important dans le développement des schémas numériques à capture de chocs en mécanique des fluides. Dans le premier article, une nouvelle méthode des volumes finis décentrée explicite est proposée pour le système de Saint-Venant avec un terme source qui comprend le paramètre de Coriolis en utilisant un maillage non structuré. La plupart des schémas numériques décentrés, efficaces pour les ondes rapides (ondes de gravité), conduisent à un niveau d'amortissement élevé pour les ondes lentes (ondes de Rossby). La méthode proposée donne de bons résultats à la fois pour les ondes de gravité et les ondes de Rossby. Les techniques proposées sont suffisantes pour supprimer le bruit numérique des ondes courtes sans amortissement des ondes longues, telles que les ondes de Rossby qui sont essentielles dans le transport de l’énergie dans les océans et l'atmosphère. Dans le cas où le système comprend une large gamme de fréquences des ondes, ce qui est le cas des écoulements atmosphériques, il est important d’utiliser des méthodes semi-implicites afin d’opter pour un pas de temps optimal. La méthode semi-implicite semi-lagrangienne à deux niveaux (SETTLS) proposée par Hortal (2002) a une région de stabilité absolue indépendante du nombre de Courant-Friedrichs-Lewy (CFL). La plupart des modèles de prévision numérique atmosphérique utilisent cette méthode comme schéma temporel. Cependant, la méthode SETTLS peut générer des oscillations pour le traitement du terme non linéaire surtout pour le cas des solutions qui ont un caractère oscillatoire. Pour remédier à ce problème, dans le deuxième article, nous avons proposé une nouvelle classe de schémas semi-implicites semi-lagrangiens potentiellement applicables aux modèles atmosphériques. Cette classe de schémas numériques présente plusieurs avantages de stabilité, de précision et de convergence. De bons résultats sont obtenus en comparaison à d'autres schémas semi-implicites semi-lagrangiens et méthodes semi-implicites de type prédicteur-correcteur. Dans le troisième article, un nouveau schéma équilibre partiellement centré est développé pour la résolution numérique des équations de Saint-Venant avec une topographie variable sur un maillage non structuré. Cette méthode est stable et simple puisqu'elle ne fait pas appel à la résolution du problème de Riemann. La méthode proposée est précise pour le cas des solutions discontinues et peut être appliquée aux écoulements peu profonds avec une topographie variable et une géométrie complexe où l'utilisation des maillages non structurés est avantageuse. Motivé par de nombreuses applications en dynamique des fluides, dans le projet de thèse on s’intéresse également au développement de méthodes numériques dans le cas des surfaces courbes. L'objectif est de concevoir des méthodes numériques robustes et efficaces pour le cas des solutions discontinues et qui préservent la structure fondamentale des équations, notamment les propriétés liées à la géométrie. Pour développer ces méthodes, l'approche suivie par Stanley Osher est adoptée et les équations de Burgers sont utilisées vu leur importance pour le développement des schémas numériques à capture de chocs. Dans le quatrième article, une méthode des volumes finis satisfaisant la compatibilité géométrique est développée pour les lois de conservation sur la sphère. Cette méthode est basée sur la résolution du problème de Riemann généralisé et l'approche du «splitting» directionnel en latitude et en longitude sur la sphère. Les dimensions géométriques sont considérées de manière analytique et la forme discrète du schéma numérique proposé respecte la propriété de compatibilité géométrique. La méthode proposée est stable et précise pour le cas des solutions discontinues de grands chocs et amplitudes en comparaison avec des schémas numériques très connus. Une nouvelle classification des flux est proposée en introduisant les notions de flux feuilletés et de flux génériques. Le comportement asymptotique des solutions est étudié en fonction de la nature du flux et les propriétés des solutions discontinues sont analysées. Les résultats démontrent la capacité et le potentiel de la méthode proposée pour la résolution des lois de conservation sur la sphère dans le cas des solutions discontinues. Ce schéma numérique pourrait être étendu au cas des équations de Saint-Venant sur la sphère. Dans le cinquième article, on propose un schéma numérique efficace respectant la propriété de compatibilité géométrique pour les lois de conservation sur la sphère. La méthode proposée présente plusieurs avantages, notamment de bons résultats dans le cas des solutions discontinues avec des chocs d’amplitudes moyennes, une faible dissipation numérique et une simplicité puisqu'elle ne fait pas appel à la résolution du problème de Riemann. Cette méthode pourrait être étendue au cas des équations de Saint-Venant sur la sphère. Dans le sixième article, une nouvelle approche est proposée pour analyser la stabilité des schémas numériques appliqués aux écoulements peu profonds. Cette méthode utilise la notion du pseudo spectre des matrices. La méthode proposée est efficace en comparaison avec les méthodes couramment utilisées telles que la stabilité asymptotique et la stabilité de Lax-Richtmyer. Cette approche est utile pour le choix du type de maillage, des emplacements appropriés des variables primitives (hauteur et vitesses), et de la méthode de discrétisation la plus stable.
34

Techniques d'analyse de stabilité et synthèse de contrôle pour des systèmes hyperboliques / Stability analysis techniques and synthesis of control for hyperbolic systems

Caldeira, André 10 March 2017 (has links)
Ce travail étudie les stratégies de contrôle des limites pour l'analyse de stabilité et la stabilisation d'un système hyperbolique de premier ordre couplé à des conditions limites dynamiques non linéaires. La modélisation d'un écoulement à l'intérieur d'un tube (phénomène de transport de fluide) avec une stratégie de contrôle des limites appliquée dans une installation expérimentale physique est considérée comme une étude de cas pour évaluer les stratégies proposées. Dans le contexte des systèmes de dimension finie, des outils de contrôle classiques sont appliqués pour traiter des systèmes hyperboliques de premier ordre ayant des conditions limites données par le couplage d'un modèle dynamique de colonne de chauffage et d'un modèle statique de ventilateur. Le problème de suivi de cette dynamique complexe est abordé de manière simple en considérant des approximations linéaires, des schémas de différences finies et une action intégrale conduisant à un système linéaire à temps discret augmenté avec une dimension dépendant de la taille d'échelon de la discrétisation dans l'espace. Par conséquent, pour la contrepartie dimensionnelle infinie, deux stratégies sont proposées pour résoudre le problème de contrôle de frontière des systèmes hyperboliques de premier ordre couplé à des conditions de frontière dynamique non linéaires. Le premier se rapproche de la dynamique du système hyperbolique de premier ordre par un retard pur. La stabilité convexe et les conditions de stabilisation des systèmes quadratiques non linéaires retardés d'entrée incertaine sont proposées sur la base de la théorie de la stabilité de Lyapunov-Krasovskii (LK) qui sont formulées en termes de contraintes de l'inégalité matricielle linéaire (LMI) avec des variables supplémentaires lâches (introduites par le lemme de Finsler ). Ainsi, des fonctions strictement de Lyapunov sont utilisées pour dériver une approche basée sur LMI pour la stabilité de la frontière régionale robuste et la stabilisation des systèmes hyperboliques de premier ordre avec une condition de frontière définie au moyen d'un système dynamique non linéaire quadratique. Les conditions de stabilité et de stabilisation proposées pour LMI sont évaluées en tenant compte de plusieurs exemples universitaires et de l'écoulement à l'intérieur d'une étude de cas. / This work studies boundary control strategies for stability analysis and stabilization of first-order hyperbolic system coupled with nonlinear dynamic boundary conditions. The modeling of a flow inside a pipe (fluid transport phenomenon) with boundary control strategy applied in a physical experimental setup is considered as a case study to evaluate the proposed strategies. Firstly, in the context of finite dimension systems, classical control tools are applied to deal with first-order hyperbolic systems having boundary conditions given by the coupling of a heating column dynamical model and a ventilator static model. The tracking problem of this complex dynamics is addressed in a simple manner considering linear approximations, finite difference schemes and an integral action leading to an augmented discrete-time linear system with dimension depending on the step size of discretization in space. Hence, for the infinite dimensional counterpart, two strategies are proposed to address the boundary control problem of first-order hyperbolic systems coupled with nonlinear dynamic boundary conditions. The first one approximates the first-order hyperbolic system dynamics by a pure delay. Then, convex stability and stabilization conditions of uncertain input delayed nonlinear quadratic systems are proposed based on the Lyapunov-Krasovskii (L-K) stability theory which are formulated in terms of Linear Matrix Inequality (LMI) constraints with additional slack variables (introduced by the Finsler's lemma). Thus, strictly Lyapunov functions are used to derive an LMI based approach for the robust regional boundary stability and stabilization of first-order hyperbolic systems with a boundary condition defined by means of a nonlinear quadratic dynamic system. The proposed stability and stabilization LMI conditions are evaluated considering several academic examples and also the flow inside a pipe as case study.
35

Méthodes variationnelles et hyperboliques appliquées aux systèmes mécaniques sous contrainte / Variational and hyperbolic methods applied to constained mechanical systems

Mifsud, Clément 10 November 2016 (has links)
Dans cette thèse, nous nous intéressons aux équations aux dérivées partielles hyperboliques sous contraintes ; plus particulièrement aux problèmes provenant de la mécanique de la plasticité parfaite. Un bref historique de l'origine mécanique des problèmes de la plasticité parfaite ainsi que des résultats précédemment obtenus sont décrits dans le Chapitre 1. Dans le Chapitre 2, nous concentrons notre attention sur les systèmes hyperboliques avec conditions de bord. Nous développons une théorie faible pour ces problèmes et expliquons dans un cas simplifié le caractère bien posé de cette théorie. Puis, nous introduisons de manière similaire la notion de solution faible pour des systèmes hyperboliques avec condition de bord soumis à une contrainte. Nous nous dédions, dans le chapitre 3, à l'étude d'un modèle simplifié de la dynamique de la plasticité parfaite. Nous confrontons l'approche introduite au chapitre précédent avec celle, plus classique, provenant du calcul des variations qui permet d'obtenir l'existence et l'unicité des solutions pour ce modèle. Cela nous permet de mettre en évidence une nouvelle interaction entre les conditions de bord et les contraintes ainsi que d'aboutir à un théorème de régularité des solutions. Dans le chapitre 4, nous nous intéressons à l'approximation numérique des systèmes hyperboliques sous contraintes grâce à des schémas de type volumes finis. Cela nous permet d'obtenir un résultat de convergence pour les problèmes sans bord et d'illustrer numériquement les interactions entre les conditions de bord et les contraintes sur l'exemple du chapitre 3. / In this thesis, we consider constrained hyperbolic partial differential equations and more precisely mechanical problems coming from perfect plasticity. The goal of this thesis is to study these problems thanks to different approaches, to analyze the interactions between these different points of view and to confront these various analyzes to get new results. A brief review of the mechanical origin of perfect plasticity problems and also of the previous results on these topics are described in Chapter 1. In Chapter 2, we focus our attention on hyperbolic systems with boundary conditions. First, we develop a weak theory for these problems and explain, in a simplified case, why this theory is well-posed. Then, we introduce similarly a notion of weak solutions for constrained hyperbolic systems with boundary conditions. Chapter 3 is devoted to the study of the simplified model of dynamical perfect plasticity. We confront the approach introduced in the previous chapter with the one, more standard, coming from calculus of variations that allows us to obtain existence and uniqueness of the solutions for this model. It allows us to bring to light a new interaction between the boundary conditions and the constraints and to get a short-time regularity theorem. Lastly, in Chapter 4, we are interested in the numerical approximation of constrained hyperbolic systems thanks to finite volume schemes. This work allows us to get a convergence result for problems without boundary condition and to show numerically the link between boundary conditions and constraints on the example of the previous chapter.
36

Géométrie asymptotique sous-linéaire : hyperbolicité, autosimilarité, invariants / Large-scale sublinear geometry : hyperbolicity, self-similarity, invariants

Pallier, Gabriel 02 September 2019 (has links)
Les équivalences sous-linéairement bilipschitziennes ont été introduites par Yves Cornulier afin de décrire les cônes asymptotiques des groupes de Lie. Elles généralisent les quasiisométries. Cette thèse construit des invariants pour l'équivalence sous-linéairement bilipschitzienne entre groupes et espaces hyperboliques au sens de Gromov, en utilisant l'analyse au bord de Gromov. Une classe d'application généralisant les homéomorphismes quasisymétriques, et une dimension conforme associée, sont introduites. Les espaces riemannien de type non-compact et de rang un, ainsi que certains espaces homogènes de courbure strictement négative, sont classifiés à équivalence sous-linéairement bilipschitzienne près. / Sublinearly biLipschitz equivalences have been introduced by Yves Cornulier as a means of describing the asymptotic cones of Lie groups; they include and generalize quasiisometries. This thesis provides invariants for sublinearly biLipschitz equivalence between Gromov-hyperbolic groups and spaces using analysis on the Gromov boundary. A class of applications generalizing quasisymmetric mappings, and a corresponding conformal dimension, are introduced as tools. Riemannian symmetric spaces of noncompact type as well as a subclass of homogeneous negatively curved Riemannian manifolds are classified up to sublinearly biLipschitz equivalence.
37

Cubulations de variétés hyperboliques compactes / Cubulations of closed hyperbolic manifolds

Dufour, Guillaume 23 March 2012 (has links)
Cette thèse est une contribution au domaine des cubulations de groupes hyperboliques au sens de Gromov. Nous nous intéressons au cas particulier des groupes fondamentaux de variétés hyperboliques réelles compactes. La philosophie inspirée dans ce domaine par les travaux de M. Sageev est que si un groupe hyperbolique possède suffisamment de sous-groupes de codimension 1 quasi-convexes, alors il agit géométriquement sur un complexe cubique CAT(0) de dimension finie. Nous démontrons un critère précis de cubulation pour les groupes fondamentaux de variétés hyperboliques compactes, à l'aide de constructions d'espaces à murs quasi-isométriques à l'espace hyperbolique réel. Nous nous restreignons par la suite au cas particulier de la dimension 3 et plus particulièrement aux 3-variétés hyperboliques compactes virtuellement fibrées sur le cercle. Nous exploitons alors une construction de surfaces immergées incompressibles dites coupées-croisées due à D. Cooper, D. Long et A. Reid dans une telle 3-variété M pour fabriquer des sous-groupes de surface de son groupe fondamental~G. En raffinant des arguments de J. Masters et en exploitant la structure de l'application de Cannon-Thurston, nous parvenons à construire des sous-groupes de surfaces quasi-convexes de G en quantité suffisante pour que leurs ensembles limites permettent de séparer toutes les paires de points distincts du bord du revêtement universel de M. En conséquence de cette construction, G agit géométriquement sur un complexe cubique CAT(0) de dimension finie. D. Wise soulève alors la question de savoir si ce groupe G peut agir géométriquement et également virtuellement co-spécialement (au sens de F. Haglund et D. Wise) sur un complexe cubique CAT(0). Une réponse positive résoudrait les conjectures selon lesquelles G est large et le premier nombre de Betti virtuel de M est infini. Nous faisons remarquer que pour obtenir une réponse positive à cette question, il suffit de trouver une surface coupée-croisée virtuellement plongée dans un revêtement fini fibré sur le cercle de M. Nous concluons en présentant des conditions algébriques, puis géométriques et cohomologiques suffisantes pour qu'une surface coupée-croisée donnée soit virtuellement plongée. / This thesis contributes to the study of geometric actions of word-hyperbolic groups on finite dimensional CAT(0) cube complexes. We are mainly interested in the case of fundamental groups of closed hyperbolic manifolds. The philosophy coming from pioneer work of M. Sageev is that a hyperbolic group with sufficiently many quasi-convex codimension one subgroups acts geometrically on a finite dimensional CAT(0) cube complex. We prove a precise criterion for cubulation in the case of closed hyperbolic manifolds, by constructing spaces with walls quasi-isometric to real hyperbolic space. We next focus on the case of three dimensional closed hyperbolic manifolds which are virtually fibered over the circle. In this setting, we use a construction of incompressibly immersed cut-and-cross-join surfaces due to D. Cooper, D. Long and A. Reid that yields surface subgroups of the fundamental group G of the 3-manifold M. By expanding on work of J. Masters and using the structure of the Cannon-Thurston map, we are able to build many quasi-convex surface subgroups of G whose limits sets may be used to separate any pair of distinct points in the boundary of the universal cover of M. As a consequence, G acts geometrically on a finite dimensional CAT(0) cube complex. D. Wise then asks if it is possible that G acts both geometrically and virtually co-specially (in the sense of F. Haglund and D. Wise) on a CAT(0) cube complex. A positive answer would solve the long-standing conjectures that G is large and M has infinite virtual first Betti number. We then explain why finding a virtually embedded cut-and-cross-join surface in a finite cover of M would be enough to solve this problem. Finally, we give some algebraic and then geometric and cohomological sufficient conditions for a given cut-and-cross-join surface to virtually embed.
38

Clôture algébrique et définissable dans les groupes libres

Vallino, Daniele A.G. 05 June 2012 (has links) (PDF)
Nous étudions la clôture algébrique et définissable dans les groupes libres. Les résultats principaux peuvent être résumés comme suit. Nous montrons un résultat de constructibilité des groupes hyperboliques sans torsion au-dessus de la clôture algébrique d'un sous-ensemble engendrant un groupe non abélien. Nous avons cherché à comprendre la place qu'occupe la clôture algébrique acl_G(A) dans certaines décompositions de G. Nous avons étudié la possibilité de la généralisation de la méthode de Bestvina-Paulin dans d'autres directions, en considérant les groupes de type fini qui agissent d'une manière acylindrique (au sens de Bowditch) sur les graphes hyperboliques. Enfin, nous avons étudié les relations qui existent entre les différentes notions de clôture algébrique et entre la clôture algébrique et la clôture définissable.
39

Jauge conforme des espaces métriques compacts

Carrasco Piaggio, Matias 25 October 2011 (has links)
L'objet principal de cette thèse est l'étude de la dimension conforme Ahlfors régulière d'un espace métrique. C'est un invariant numérique par quasisymétrie, introduit par P. Pansu, permettant la classification à quasi-isométrie près des espaces homogènes de courbure négative. Elle joue actuellement un rôle important en théorie géométrique des groupes et en dynamique conforme. A partir d'une suite de recouvrements d'un espace métrique compact on construit des distances de dimension contrôlée appartenant à la jauge conforme (Ahlfors régulière). On peut ainsi caractériser toutes les métriques de la jauge à homéomorphismes bi-Lipschitz près. On montre comment calculer la dimension conforme AR à partir de modules combinatoires en considérant un exposant critique. Comme conséquence de cette égalité on obtient un critère général de dimension un. Les conditions sont données en termes de points de coupure locale.On donne par ailleurs des applications de ces résultats aux bords des groupes hyperboliques et aux ensembles de Julia des fractions rationnelles semihyperboliques. / In this thesis we study the Ahlfors regular conformal dimension of a metric space. This is a quasisymmetric numerical invariant, introduced by P. Pansu, which was used to classify negatively curved homogeneous spaces up to quasi-isometries. It plays nowadays an important role in geometric group theory and in conformal dynamics.Using a sequence of finite coverings of a compact metric space, we construct distances in the (Ahlfors regular) conformal gauge of controlled dimension. We obtain in this way a combinatorial characterization (up to bi-Lipschitz homeomorphisms) of all the metrics of the gauge.We show how to compute the conformal dimension (AR) using the critical exponent associated to the combinatorial modulus. As a consequence of this equality we obtain a general criterion ensuring dimension one. The conditions are stated in terms of local cut points.Finally, we give applications of these results to the boundaries of Gromov hyperbolic groups and to the Julia sets of semi-hyperbolic rational maps.
40

Analyse de sensibilité pour systèmes hyperboliques non linéaires / Sensitivity analysis for nonlinear hyperbolic equations of conservation laws

Fiorini, Camilla 11 July 2018 (has links)
L’analyse de sensibilité (AS) concerne la quantification des changements dans la solution d’un système d’équations aux dérivées partielles (EDP) dus aux varia- tions des paramètres d’entrée du modèle. Les techniques standard d’AS pour les EDP, comme la méthode d’équation de sensibilité continue, requirent de dériver la variable d’état. Cependant, dans le cas d’équations hyperboliques l’état peut présenter des dis- continuités, qui donc génèrent des Dirac dans la sensibilité. Le but de ce travail est de modifier les équations de sensibilité pour obtenir un syst‘eme valable même dans le cas discontinu et obtenir des sensibilités qui ne présentent pas de Dirac. Ceci est motivé par plusieurs raisons : d’abord, un Dirac ne peut pas être saisi numériquement, ce qui pourvoit une solution incorrecte de la sensibilité au voisinage de la discontinuité ; deuxièmement, les pics dans la solution numérique des équations de sensibilité non cor- rigées rendent ces sensibilités inutilisables pour certaines applications. Par conséquent, nous ajoutons un terme de correction aux équations de sensibilité. Nous faisons cela pour une hiérarchie de modèles de complexité croissante : de l’équation de Burgers non visqueuse au système d’Euler quasi-1D. Nous montrons l’influence de ce terme de correction sur un problème d’optimisation et sur un de quantification d’incertitude. / Sensitivity analysis (SA) concerns the quantification of changes in Partial Differential Equations (PDEs) solution due to perturbations in the model input. Stan- dard SA techniques for PDEs, such as the continuous sensitivity equation method, rely on the differentiation of the state variable. However, if the governing equations are hyperbolic PDEs, the state can exhibit discontinuities yielding Dirac delta functions in the sensitivity. We aim at modifying the sensitivity equations to obtain a solution without delta functions. This is motivated by several reasons: firstly, a Dirac delta function cannot be seized numerically, leading to an incorrect solution for the sensi- tivity in the neighbourhood of the state discontinuity; secondly, the spikes appearing in the numerical solution of the original sensitivity equations make such sensitivities unusable for some applications. Therefore, we add a correction term to the sensitivity equations. We do this for a hierarchy of models of increasing complexity: starting from the inviscid Burgers’ equation, to the quasi 1D Euler system. We show the influence of such correction term on an optimization algorithm and on an uncertainty quantification problem.

Page generated in 0.0607 seconds