• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis of Hyperelastic Materials with Mechanica - Theory and Application Examples / Analyse hyperelastischer Materialien mit Mechanica - Theorie und Anwendungsbeispiele

Jakel, Roland 03 December 2010 (has links) (PDF)
Part 1: Theoretic background information - Review of Hooke’s law for linear elastic materials - The strain energy density of linear elastic materials - Hyperelastic material - Material laws for hyperelastic materials - About selecting the material model and performing tests - Implementation of hyperelastic material laws in Mechanica - Defining hyperelastic material parameters in Mechanica - Test set-ups and specimen shapes of the supported material tests - The uniaxial compression test - Stress and strain definitions in the Mechanica LDA analysis Part 2: Application examples - A test specimen subjected to uniaxial loading - A volumetric compression test - A planar test - Influence of the material law Appendix - PTC Simulation Services Introduction - Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation - Das Hookesche Gesetz für linear-elastische Werkstoffe - Die Dehnungsenergiedichte für linear-elastische Materialien - Hyperelastisches Material - Materialgesetze für Hyperelastizität - Auswählen des Materialgesetzes und Testdurchführung - Implementierung der hyperelastischen Materialgesetze in Mechanica - Definieren der hyperelastischen Materialparameter in Mechanica - Testaufbauten und Prüfkörper der unterstützten Materialtests - Der einachsige Druckversuch - Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen Verformungen Teil 2: Anwendungsbeispiele - Ein einachsig beanspruchter Prüfkörper - Ein volumetrischer Drucktest - Ein planarer Test - Einfluss des Materialgesetzes Anhang: - Kurzvorstellung der PTC Simulationsdienstleistungen - Wörterbuch technisches Englisch-Deutsch
22

The Development and Application of Tools to Study the Multiscale Biomechanics of the Aortic Valve

Zhao, Ruogang 06 December 2012 (has links)
Calcific aortic valve disease (CAVD) is one of the most common causes of cardiovascular disease in North America. Mechanical factors have been closely linked to the pathogenesis of CAVD and may contribute to the disease by actively regulating the mechanobiology of valve interstitial cells (VICs). Mechanical forces affect VIC function through interactions between the VIC and the extracellular matrix (ECM). Studies have shown that the transfer of mechanical stimulus during cell-ECM interaction depends on the local material properties at hierarchical length scales encompassing tissue, cell and cytoskeleton. In this thesis, biomechanical tools were developed and applied to investigate hierarchical cell-ECM interactions, using VICs and valve tissue as a model system. Four topics of critical importance to understanding VIC-ECM interactions were studied: focal biomechanical material properties of aortic valve tissue; viscoelastic properties of VICs; transduction of mechanical deformation from the ECM to the cytoskeletal network; and the impact of altered cell-ECM interactions on VIC survival. To measure focal valve tissue properties, a micropipette aspiration (MA) method was implemented and validated. It was found that nonlinear elastic properties of the top layer of a multilayered biomaterial can be estimated by MA by using a pipette with a diameter smaller than the top layer thickness. Using this approach, it was shown that the effective stiffness of the fibrosa layer is greater than that of the ventricularis layer in intact aortic valve leaflets (p<0.01). To characterize the viscoelastic properties of VICs, an inverse FE method of single cell MA was developed and compared with the analytical half-space model. It was found that inherent differences in the half-space and FE models of single cell MA yield different cell viscoelastic material parameters. However, under particular experimental conditions, the parameters estimated by the half-space model are statistically indistinguishable from those predicted by the FE model. To study strain transduction from the ECM to cytoskeleton, an improved texture correlation algorithm and a uniaxial tension release device were developed. It was found that substrate strain fully transfers to the cytoskeletal network via focal adhesions in live VICs under large strain tension release. To study the effects of cell-ECM interactions on VIC survival, two mechanical stimulus systems that can simulate the separate effects of cell contraction and cell monolayer detachment were developed. It was found that cell sheet detachment and disrupted cell-ECM signaling is likely responsible for the apoptosis of VICs grown in culture on thin collagen matrices, leading to calcification. The studies presented in this thesis refine existing biomechanical tools and provide new experimental and analytical tools with which to study cell-ECM interactions. Their application resulted in an improved understanding of hierarchical valve biomechanics, mechanotransduction, and mechanobiology.
23

The Development and Application of Tools to Study the Multiscale Biomechanics of the Aortic Valve

Zhao, Ruogang 06 December 2012 (has links)
Calcific aortic valve disease (CAVD) is one of the most common causes of cardiovascular disease in North America. Mechanical factors have been closely linked to the pathogenesis of CAVD and may contribute to the disease by actively regulating the mechanobiology of valve interstitial cells (VICs). Mechanical forces affect VIC function through interactions between the VIC and the extracellular matrix (ECM). Studies have shown that the transfer of mechanical stimulus during cell-ECM interaction depends on the local material properties at hierarchical length scales encompassing tissue, cell and cytoskeleton. In this thesis, biomechanical tools were developed and applied to investigate hierarchical cell-ECM interactions, using VICs and valve tissue as a model system. Four topics of critical importance to understanding VIC-ECM interactions were studied: focal biomechanical material properties of aortic valve tissue; viscoelastic properties of VICs; transduction of mechanical deformation from the ECM to the cytoskeletal network; and the impact of altered cell-ECM interactions on VIC survival. To measure focal valve tissue properties, a micropipette aspiration (MA) method was implemented and validated. It was found that nonlinear elastic properties of the top layer of a multilayered biomaterial can be estimated by MA by using a pipette with a diameter smaller than the top layer thickness. Using this approach, it was shown that the effective stiffness of the fibrosa layer is greater than that of the ventricularis layer in intact aortic valve leaflets (p<0.01). To characterize the viscoelastic properties of VICs, an inverse FE method of single cell MA was developed and compared with the analytical half-space model. It was found that inherent differences in the half-space and FE models of single cell MA yield different cell viscoelastic material parameters. However, under particular experimental conditions, the parameters estimated by the half-space model are statistically indistinguishable from those predicted by the FE model. To study strain transduction from the ECM to cytoskeleton, an improved texture correlation algorithm and a uniaxial tension release device were developed. It was found that substrate strain fully transfers to the cytoskeletal network via focal adhesions in live VICs under large strain tension release. To study the effects of cell-ECM interactions on VIC survival, two mechanical stimulus systems that can simulate the separate effects of cell contraction and cell monolayer detachment were developed. It was found that cell sheet detachment and disrupted cell-ECM signaling is likely responsible for the apoptosis of VICs grown in culture on thin collagen matrices, leading to calcification. The studies presented in this thesis refine existing biomechanical tools and provide new experimental and analytical tools with which to study cell-ECM interactions. Their application resulted in an improved understanding of hierarchical valve biomechanics, mechanotransduction, and mechanobiology.
24

Analysis of Hyperelastic Materials with Mechanica - Theory and Application Examples

Jakel, Roland 03 June 2010 (has links)
Part 1: Theoretic background information - Review of Hooke’s law for linear elastic materials - The strain energy density of linear elastic materials - Hyperelastic material - Material laws for hyperelastic materials - About selecting the material model and performing tests - Implementation of hyperelastic material laws in Mechanica - Defining hyperelastic material parameters in Mechanica - Test set-ups and specimen shapes of the supported material tests - The uniaxial compression test - Stress and strain definitions in the Mechanica LDA analysis Part 2: Application examples - A test specimen subjected to uniaxial loading - A volumetric compression test - A planar test - Influence of the material law Appendix - PTC Simulation Services Introduction - Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation - Das Hookesche Gesetz für linear-elastische Werkstoffe - Die Dehnungsenergiedichte für linear-elastische Materialien - Hyperelastisches Material - Materialgesetze für Hyperelastizität - Auswählen des Materialgesetzes und Testdurchführung - Implementierung der hyperelastischen Materialgesetze in Mechanica - Definieren der hyperelastischen Materialparameter in Mechanica - Testaufbauten und Prüfkörper der unterstützten Materialtests - Der einachsige Druckversuch - Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen Verformungen Teil 2: Anwendungsbeispiele - Ein einachsig beanspruchter Prüfkörper - Ein volumetrischer Drucktest - Ein planarer Test - Einfluss des Materialgesetzes Anhang: - Kurzvorstellung der PTC Simulationsdienstleistungen - Wörterbuch technisches Englisch-Deutsch
25

Analysis of Hyperelastic Materials with Mechanica - Theory and Application Examples

Jakel, Roland 03 December 2010 (has links)
Part 1: Theoretic background information - Review of Hooke’s law for linear elastic materials - The strain energy density of linear elastic materials - Hyperelastic material - Material laws for hyperelastic materials - About selecting the material model and performing tests - Implementation of hyperelastic material laws in Mechanica - Defining hyperelastic material parameters in Mechanica - Test set-ups and specimen shapes of the supported material tests - The uniaxial compression test - Stress and strain definitions in the Mechanica LDA analysis Part 2: Application examples - A test specimen subjected to uniaxial loading - A volumetric compression test - A planar test - Influence of the material law Appendix - PTC Simulation Services Introduction - Dictionary Technical English-German / Teil 1: Theoretische Hintergrundinformation - Das Hookesche Gesetz für linear-elastische Werkstoffe - Die Dehnungsenergiedichte für linear-elastische Materialien - Hyperelastisches Material - Materialgesetze für Hyperelastizität - Auswählen des Materialgesetzes und Testdurchführung - Implementierung der hyperelastischen Materialgesetze in Mechanica - Definieren der hyperelastischen Materialparameter in Mechanica - Testaufbauten und Prüfkörper der unterstützten Materialtests - Der einachsige Druckversuch - Spannungs- und Dehnungsdefinition in der Mechanica-Analyse mit großen Verformungen Teil 2: Anwendungsbeispiele - Ein einachsig beanspruchter Prüfkörper - Ein volumetrischer Drucktest - Ein planarer Test - Einfluss des Materialgesetzes Anhang: - Kurzvorstellung der PTC Simulationsdienstleistungen - Wörterbuch technisches Englisch-Deutsch
26

Komplexe Kontakt- und Materialmodellierung am Beispiel einer Dichtungssimulation

Nagl, Nico 08 May 2014 (has links)
In vielen industriellen Anwendungen sind Dichtungen im Einsatz. Vergleicht man den Preis mit dem eines Gesamtsystems, in denen Dichtungen verwendet werden, so sind Dichtungen verhältnismäßig günstig. Jedoch führt ein Versagen von Dichtungen meist zu schwerwiegenden Konsequenzen. Dichtungen sind komplexe Subsysteme und ihre Auslegung erfordert umfangreiche Kenntnisse im Bereich Materialmodellierung, Belastung und Versagenskriterien. Die heutige Simulationstechnologie ermöglicht einen parametrischen Workflow für die Berechnung des Verhaltens von Dichtungen mit den auftretenden Effekten wie nichtlinearem Materialverhalten, wechselnden Kontaktbedingungen und Flüssigkeitsunterwanderung bei Druck. Als ein führendes Simulationswerkzeug für diese physikalische Fragestellung wird ANSYS Mechanical für die Auslegung herangezogen. Desweiteren kann das Verständnis für das Produkt erhöht werden, was zu einer Verbesserung der Funktionalität und der Zuverlässigkeit führt. Versuchsdaten können als Spannungs-Dehnungskurven in ANSYS importiert werden, welche das Materialverhalten des hyperelastischen Werkstoffs mit traditionellen Materialmodellen wie Mooney Rivlin, Ogden and Yeoh oder einer neueren Formulierung, der Antwortfunktionsmethode, widerspiegeln. Robuste Kontakttechnologien beschleunigen die Simulation und Entwicklungszeit-Berechnungszeiten und gewährleisten ein genaues Verhalten des Simulationsmodells. Insbesondere bei Dichtungen ist die druckbeaufschlagte Fläche in 2D und 3D Anwendungen von Bedeutung. ANSYS berechnet diese automatisch in Abhängigkeit des aktuellen Kontaktzustandes. Diese benutzerfreundliche Unterstützung führt zu einer höheren Genauigkeit des Simulationsergebnisses, da ein manuelles Schätzen der Druckflächen entfällt. Mit einem parametrischen und durchgängigen Ansatz innerhalb von ANSYS Workbench, beginnend bei der CAD-Geometrie, über die Vernetzung, Material- und Randbedingungsdefinition und Lösung. können eine Reihe von Varianten in kurzer Zeit berechnet werden. Neben einem besseren Verständnis für das Produkt hilft dies dem Ingenieur Änderungen vorzunehmen, was zu exakten und aussagekräftigen Ergebnissen führt. Desweiteren kann der Einfluss von Unsicherheiten berücksichtigt werden, sodass der Berechnungsingenieur fernab von idealen Bedingungen robuste und zuverlässige Dichtungen entwickeln kann.

Page generated in 0.1067 seconds