Spelling suggestions: "subject:"hyperopia"" "subject:"hyperopiaa""
11 |
Ceractomia fotorrefrativa (PRK) com mitomicina C baseada na análise de frentes de onda corneanas para o tratamento da hipermetropia consecutiva à ceratotomia radial / Corneal wavefront-guided photorefractive keratectomy (PRK) with adjunctive mitomycin C (MMC) for the treatment of hyperopia after radial keratotomyRamon Coral Ghanem 12 November 2010 (has links)
OBJETIVO: Avaliar a eficácia, estabilidade, previsibilidade e segurança da ceratectomia fotorrefrativa (PRK) guiada pelas frentes de onda corneana para o tratamento da hipermetropia secundária à ceratotomia radial (CR). MÉTODOS: Foram avaliados prospectivamente 61 olhos de 39 pacientes consecutivos, submetidos a PRK personalizado com o laser Esiris-Schwind. A técnica constou de desepitelização mecânica, fotoablação, e utilização de mitomicina C (MMC) 0,02% por 20 ou 40 segundos. A MMC foi aplicada por 40 segundos em 17 olhos (27,9%) que haviam sido submetidos a ablações mais profundas do que 100 ?m ou apresentavam córneas previamente suturadas. As avaliações pós-operatórias foram realizadas após sete dias, um, seis, 12 e 24 meses. Todos os olhos foram avaliados após um ano e dois anos. RESULTADOS: O intervalo médio entre a CR e o PRK foi de 18,8 anos ± 3,8 (DP); o equivalente esférico (EE) médio antes da ceratotomia radial era -4,10 dioptrias (D) ± 1,44. As medidas prévias ao PRK mostraram EE médio de +4,17 D ± 1,97; astigmatismo médio de -1,39 D ± 1,04; AV com correção (AVcc) média de 0,161 ± 0,137 (logMAR); e curvatura corneana média de 35,85 ± 3,60 D. Os resultados encontrados dois anos após a cirurgia foram: EE médio de 0,14 ± 0,99 D (p < 0,001); astigmatismo médio de -1,19 ± 1,02 D (p = 0,627); AV sem correção (AVsc) média de 0,265 ± 0,196 (p < 0,001); AVcc média de 0,072 ± 0,094 (p < 0,001); e curvatura corneana média de 39,01 ± 3,18 D (p < 0,001). AVsc igual ou melhor a 20/25 foi observada em 38% dos olhos e igual ou melhor a 20/40 em 69%. A AVcc melhorou em 62,3% dos olhos, sendo que 21 olhos (34,4%) melhoraram uma linha e outros 17 olhos (27,9%), duas ou mais linhas. Um olho (1,6%) perdeu duas linhas devido ao astigmatismo irregular ocasionado por opacificação corneana periférica. Outro olho perdeu três linhas pelo desenvolvimento de ectasia corneana entre seis e 24 meses, devido ao alargamento progressivo de uma incisão radial inferior, e foi posteriormente submetido à sutura da incisão. Houve 30 olhos (49,2%) entre ± 0,50 D do EE planejado e 45 (73,8%) entre ± 1,00 D. Entre seis e 24 meses, a regressão média do EE foi de +0,39 D (p < 0,05) e cinco olhos (8,3%) sofreram desvio hipermetrópico > 1,00 D. Ocorreu redução estatisticamente significante do coma (p = 0,001), trefoil (p = 0,008), aberração esférica (p < 0,001), astigmatismo secundário (p = 0,001) e quatrefoil (p < 0,001). Não houve mudança estatisticamente significativa da contagem endotelial (p = 0,161). Dois olhos (3,3%) desenvolveram opacificação corneana periférica grau 2 e um, grau 3. CONCLUSÃO: O PRK personalizado pelas frentes de onda corneana coadjuvado pela MMC foi eficaz, previsível e seguro pelo período de dois anos para a redução da hipermetropia após a CR. No pós-operatório observou-se melhora significativa da AVsc, AVcc e das aberrações corneanas. Constatou-se, entretanto, que a hipermetropia consecutiva à CR continua a progredir após o tratamento com o excimer laser. / PURPOSE: To assess the efficacy, stability, predictability and safety of corneal wavefront-guided photorefractive keratectomy (PRK) for correcting hyperopia after radial keratotomy (RK). METHODS: In a prospective study, 61 eyes of 39 consecutive patients were treated with PRK using an Esiris-Schwind excimer laser. Corneal epithelium was mechanically removed, followed by photoablation and use of 0.02% mitomycin C (MMC) for 20 or 40 seconds. MMC was used for 40 seconds in 18 eyes (27.9%) which underwent ablations deeper than 100 micron or had previous corneal sutures. Postoperative evaluations were performed after seven days, six, 12 and 24 months. All patients were followed up for two years. RESULTS: The mean time between RK and PRK was 18.8 years ± 3.8 (SD); mean spherical equivalent (SE) before RK was -4.10 diopters (D) ± 1.44. Before PRK, the mean SE was +4.17 D ± 1.97, mean astigmatism was -1.39 D ± 1.04, the mean best-corrected visual acuity (BCVA) was 0.161 ± 0.137 (logMAR) and the mean corneal curvature was 35.85 ± 3.60 D. At 24 months, mean SE was 0.14 ± 0.99 D (p < 0.001), mean astigmatism was -1.19 ± 1.02 D (p = 0.627), mean UCVA was 0.265 ± 0.196 (p < 0.001), mean BSCVA was 0.072 ± 0.094 (p < 0.001) and the mean corneal curvature was 39.01 ± 3.18 D (p < 0.001). UCVA was 20/25 or better in 38% of eyes and 20/40 or better in 69%. BCVA improved in 62.3% of eyes, with 21 (34.4%) gaining one line and 17 (27.9%), two or more lines. One eye (1.6%) lost two lines due to irregular astigmatism and peripheral haze. Another eye lost three lines due to keratectasia occurring between six and 24 months resulting from widening of an inferior radial incision that was later sutured. Thirty eyes (49.2%) were within ± 0.50 D of intended SE and 45 (73.8%) were within ± 1.00 D. From six to 24 months, the mean SE regression was +0.39 D (p < 0.05) and five eyes (8.3%) had a hyperopic shift > 1.00 D. A significant decrease in coma (p = 0.001), trefoil (p = 0.008), spherical aberration (p < 0.001), secondary astigmatism (p = 0.001) and quatrefoil (p < 0.001) was observed. Endothelial cell counts did not show a statistically significant decrease (p = 0.161). Two eyes (3.3%) developed peripheral haze grade 2 and one, grade 3. CONCLUSION: Corneal wavefront-guided PRK with MMC was effective, predictable and safe after two years for the treatment of hyperopia after RK. A significant improvement in UCVA, BSCVA and corneal aberrations was obtained. However, hyperopic shift after RK continued to progress after excimer laser surgery.
|
12 |
Componentes refrativos da hipermetropia em crianças com ambliopia por esotropia / Refractive components of hyperopia in children with esotropic amblyopiaIara Debert 27 April 2012 (has links)
Objetivo: Estudar os componentes refrativos da hipermetropia em crianças com ambliopia por esotropia, comparando os olhos amblíopes com os olhos contralaterais. Métodos: Foram incluídos 37 pacientes de 5 a 8 anos de idade, com hipermetropia bilateral e ambliopia por esotropia. Foi realizada avaliação oftalmológica completa, incluindo refratometria sob cicloplegia, ceratometria e biometria ultrassonográfica modo A. Foram registrados profundidade da câmara anterior, espessura do cristalino, profundidade da câmara vítrea e comprimento axial total. O poder refrativo do cristalino foi calculado pelas equações de Bennett. Para comparar erro refrativo, poder da córnea, poder calculado do cristalino e componentes ecobiométricos entre os olhos amblíopes e os olhos contralaterais foi empregado o teste t de Student pareado. Para avaliar a relação entre os principais componentes refrativos individuais e o erro refrativo foram empregados o coeficiente de correlação de Pearson e a análise de regressão linear. Foram construídos também modelos multivariados, incluindo comprimento axial, poder da córnea e poder do cristalino. Resultados: Os olhos amblíopes apresentaram hipermetropia mais alta, menor poder da córnea, maior poder do cristalino, menor profundidade da câmara vítrea e menor comprimento axial. Não houve diferença entre os olhos quanto à profundidade da câmara anterior ou à espessura do cristalino. A variável que apresentou correlação mais forte com o erro refrativo foi a razão comprimento axial/raio de curvatura da córnea (r = -0.92, p < 0.001 nos olhos amblíopes e r = - 0.87, p < 0.001 nos olhos contralaterais). O comprimento axial representou 39,2% da explicação da variabilidade do erro refrativo nos olhos amblíopes e 35,5% nos olhos contralaterais. O modelo que combinou comprimento axial e poder da córnea explicou 85,7% e 79,6% da variabilidade do erro refrativo, respectivamente. Houve correlação significante entre comprimento axial e poder da córnea, indicando diminuição do poder da córnea com o aumento do comprimento axial e os coeficientes de correlação foram semelhantes entre os olhos amblíopes (r = -0.53, p <0.001) e os olhos contralaterais (r = -0.57, p < 0.001). Houve correlação significante entre comprimento axial e poder do cristalino, indicando diminuição do poder do cristalino com o aumento do comprimento axial e os coeficientes de correlação também foram semelhantes entre os olhos amblíopes (r = -0.72, p < 0.001) e os olhos contralaterais (r = -0.69, p < 0.001). Conclusão: As correlações entre os principais componentes refrativos e sua contribuição individual para o erro refrativo foram semelhantes nos olhos amblíopes e nos olhos contralaterais de crianças com esotropia, a despeito da hipermetropia mais alta nos olhos amblíopes / Purpose: To study the refractive components of hyperopia in children with esotropic amblyopia, comparing amblyopic eyes with fellow eyes. Methods: Thirty-seven patients (5 to 8 years old) with bilateral hyperopia and esotropic amblyopia underwent a comprehensive ophthalmic examination, including cycloplegic refraction, keratometry and A-scan ultrasonography. Anterior chamber depth, lens thickness, vitreous chamber depth and total axial length were recorded. The refractive power of the crystalline lens was calculated using Bennett`s equations. Paired Students t-tests were used to compare refractive error, corneal power, calculated lens power and ocular biometric measurements between amblyopic eyes and their fellow eyes. The relationship between the major oculometric parameters and refractive error was assessed using Pearson correlation coefficients and linear regression. Multivariable models including axial length, corneal power and lens power were also constructed. Results: Amblyopic eyes were found to have significantly more hyperopic refraction, lesser corneal power, greater lens power, shorter vitreous chamber depth and shorter axial length, despite similar anterior chamber depth and lens thickness. The strongest correlation with refractive error was observed for the axial length/corneal radius ratio (r = -0.92, p < 0.001 for amblyopic and r = -0.87, p < 0.001 for fellow eyes). Axial length accounted for 39.2% of the refractive error variance in amblyopic eyes and 35.5% in fellow eyes. The combination of axial length and corneal power accounted for 85.7% and 79.6% of the refractive error variance respectively. A significant correlation was found between axial length and corneal power, indicating decreasing corneal power with increasing axial length, and they were similar for amblyopic eyes (r = -0.53, p < 0.001) and fellow eyes (r = -0.57, p < 0.001). A significant correlation was found between axial length and lens power, indicating decreasing lens power with increasing axial length, and they were also similar for amblyopic eyes (r = -0.72, p < 0.001) and fellow eyes (r = -0.69, p < 0.001). Conclusion: The correlations among the major refractive components and their individual contribution to refractive error were similar in amblyopic and non-amblyopic eyes in esotropic children, despite more hyperopic refraction in amblyopic eyes
|
13 |
Measures of Visual Function and Attention Related to Common Vision DisordersPart 1: Eye tracking during Storybook Reading in Young Children with HyperopiaPart 2: Functional Magnetic Resonance Imaging of Vergence in Convergence InsufficiencyOechslin, Tamara Sue 22 September 2016 (has links)
No description available.
|
14 |
Adaptive gait changes due to spectacle magnification and dioptric blur in older peopleElliott, D. B., Chapman, G. J. January 2010 (has links)
PURPOSE: A recent study suggested that updated spectacles could increase fall rate in frail older people. The authors hypothesized that the increased risk may be due to changes in spectacle magnification. The present study was conducted to assess the effects of spectacle magnification on step negotiation. METHODS: Adaptive gait and visual function were measured in 10 older adults (mean age, 77.1 +/- 4.3 years) with the participants' optimal refractive correction and when blurred with +1.00, +2.00, -1.00, and -2.00 DS lenses. Adaptive gait measurements for the leading and trailing foot included foot position before the step, toe clearance of the step edge, and foot position on the step. Vision measurements included visual acuity, contrast sensitivity, and stereoacuity. RESULTS: The blur lenses led to equal decrements in visual acuity and stereoacuity for the +1.00 and -1.00 DS and the +2.00 and -2.00 DS lenses. However, they had very different effects on step negotiation compared with the optimal correction. Positive-blur lenses led to an increased distance of the feet from the step, increased vertical toe clearance and reduced distance of the leading heel position on the step. Negative lenses led to the opposite of these changes. CONCLUSIONS: The step negotiation changes did not mirror the effects of blur on vision, but were driven by the magnification changes of the lenses. Steps appear closer and larger with positive lenses and farther away and smaller with negative ones. Magnification is a likely explanation of the mobility problems some older adults have with updated spectacles and after cataract surgery.
|
15 |
The Heritability of Refractive Error between SiblingsGraham, Nicholas Dale 01 September 2010 (has links)
No description available.
|
16 |
Determinants of seeking eye care services among Grade 8 to 12 learners in Giyani, South AfricaMulungwa, Justice 05 1900 (has links)
MPH / Department of Public Health / See the attached abstract below
|
17 |
The Pattern of Distribution of Refractive Error among Primary School Children of Malamulele Community, Vhembe District, Limpopo ProvinceBaloyi, Voster Hlawulani Austine 05 1900 (has links)
MPH / Department of Public Health / See the attached abstract below
|
Page generated in 0.0416 seconds