• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 47
  • 10
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 321
  • 140
  • 131
  • 109
  • 70
  • 66
  • 59
  • 54
  • 52
  • 47
  • 45
  • 38
  • 36
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Experimental Investigations on Hypersonic Waverider

Nagashetty, K January 2014 (has links) (PDF)
In the flying field of space transportation domain, the increased efforts involving design and development of hypersonic flight for space missions is on toe to provide the optimum aerothermodynamic design data to satisfy mission requirements. Aerothermodynamics is the basis for designing and development of hypersonic space transportation flight vehicles such as X 51 a, and other programmes like planetary probes for Moon and Mars, and Earth re-entry vehicles such as SRE and space shuttle. It enables safe flying of aerospace vehicles, keeping other parameters optimum for structural and materials with thermal protection systems. In this context, the experimental investigations on hypersonic waverider are carried out at design Mach 6. The hypersonic waverider has high lift to drag ratio at design Mach number even at zero degree angle of incidence, and this seems to be one of the special characteristics for its shape at hypersonic flight regime. The heat transfer rates are measured using 30 thin film platinum gauges sputtered on a Macor material that are embedded on the test model. The waverider has 16 sensors on top surface and 14 on bottom surface of a model. The surface temperature history is directly converted to heat transfer rates. The heat transfer data are measured for design (Mach 6) and off-design Mach numbers (8) in the hypersonic shock tunnel, HST2. The results are obtained at stagnation enthalpy of ~ 2 MJ/kg, and Reynolds number range from 0.578 x 106 m-1 to 1.461 x 106 m-1. In addition, flow visualization is carried out by using Schlieren technique to obtain the shock structures and flow evolution around the Waverider. Some preliminary computational analyses are conducted using FLUENT 6.3 and HiFUN, which gave quantitative results. Experimentally measured surface heat flux data are compared with the computed one and both the data agree well. These detailed results are presented in the thesis.
42

Shock Tunnel Investigations On Hypersonic Separated Flows

Reddeppa, P 05 1900 (has links)
Knowledge of flow separation is very essential for proper understanding of both external and internal aerothermodynamics of bodies. Because of unique flow features such as thick boundary layers, merged shock layers, strong entropy layers, flow separation in the flow field of bodies at hypersonic speeds, is both complex as well as interesting. The problem of flow separation is further complicated at very high stagnation enthalpies because of the real gas effects. Notwithstanding the plethora of information available in open literature even for simple geometric configurations the experimentally determined locations of flow separation and re-attachment points do not match well with the results from the computational studies even at hypersonic laminar flow conditions. In this backdrop the main aim of the present study is to generate a reliable experimental database of classical separated flow features around generic configurations at hypersonic laminar flow conditions. In the present study, flow visualization using high speed camera, surface convective heat transfer rate measurements using platinum thin film sensors, and direct skin friction measurements using PZT crystals have been carried out for characterizing the separated flow field around backward facing step, double cone and double wedge models. The numerical simulations by solving the Navier-Stokes equations have also been carried out to complement the experimental studies. The generic models selected in the present study are simple configurations, where most of the classical hypersonic separated flow features of two-dimensional, axi-symmetric and three dimensional flow fields can be observed. All the experiments are carried out in IISc hypersonic shock tunnel (HST2) at Mach 5.75 and 7.6. For present study, helium and air have been used as the driver and test gases respectively. The high speed schlieren flow visualization is carried out on backward facing step (2 and 3 mm step height), double cone (semi-apex angles of 150/350 and 250/680) and double wedge (semi-apex angles of 150/350) models by using high speed camera (Phantom 7.1). From the visualized shockwave structure in the flow field the flow reattachment point after separation has been clearly identified for backward facing step, double cone and double wedge models at hypersonic Mach numbers while the separation point could not be clearly identified because of the low free stream density in shock tunnels. However the flow visualization studies helped clearly identifying the region of flow separation on the model. Based on the results from the flow visualization studies both the physical location and distribution of platinum thin film gauges was finalized for the heat transfer rate measurements. Surface heat transfer rates along the length of two backward facing step (2 and 3 mm step height) models have been measured using platinum thin film gauges deposited on Macor substrate. The Eckert reference temperature method is used along the flat plate for predicting the heat flux distribution. Theoretical analysis of heat flux distribution down stream of the backward facing step model has been carried out using Gai’s dimensional analysis. The study reveals for the first time that at moderate stagnation enthalpy levels (~2 MJ/kg) the hypersonic separated flow around a backward facing step reattaches rather smoothly without any sudden spikes in the measured values of surface heat transfer rates. Based on the measured surface heating rates on the backward facing step, the reattachment distance was estimated to be approximately 10 and 8 step heights downstream of 2 and 3 mm step respectively at nominal Mach number of 7.6. Convective surface heat transfer experiments have also been carried out on axi-symmetric double cone models (semi-apex angles of 15/35 and 25/68), which is analogous to the Edney’s shock interactions of Type VI and Type IV respectively. The flow is unsteady on the double cone model of 25/68 and measured heat flux is not constant. The heat transfer experiments were also carried out on the three-dimensional double wedge model (semi-apex angles of 15/35). The separation and reattachment points have been clearly identified from the experimental heat transfer measurements. It has been observed that the measured heat transfer rates on the double wedge model is less than the double cone model (semi-apex angles of 150/350) for the identical experimental conditions at the same gauge locations. This difference could be due to the three-dimensional entropy relieving effects of double wedge model. PZT-5H piezoelectric based skin friction gauge is developed and used for direct skin friction measurements in hypersonic shock tunnel (HST2). The bare piezoelectric PZT-5H elements (5 mm × 5 mm with thickness of 0.75 mm) polarized in the shear mode have been used as a skin friction gauge by operating the sensor in the parallel shear mode direction. The natural frequency of the skin friction sensor is ~80 kHz, which is suitable for impulse facilities. The direct skin friction measurements are carried out on flat plate, backward facing step (2 mm step height) and double wedge models. The measured value of skin friction coefficient (integrated over an area of 25 sq. mm; sensor surface area) at a distance of 23 mm from the leading edge of the sharp leading edge backward facing step model is found to be ~ 0.0043 while it decreases to ~ 0.003 at a distance of 43 mm from the leading edge at a stagnation enthalpy of ~ 2MJ/kg. The measured skin friction matches with the Eckert reference temperature within ± 10%. The skin friction coefficient is also measured on the double wedge at a distance of 73 mm from the tip of the first wedge along the surface and is found to be 4.56 × 10-3. Viscous flow numerical simulations are carried out on two-dimensional backward facing step, axi-symmetric double cone and three-dimensional double wedge models using ANSYS-CFX 5.7 package. Navier-Stokes Simulations are carried out at Mach 5.75 and 7.6 using second order accurate (both in time and space) high resolution scheme. The flow is assumed to be laminar and steady throughout the model length except on the double cone (semi-apex angles of 250/680) model configuration, which represents the unsteady flow geometry. Analogous Edney Type VI and Type IV shock interactions are observed on double cone, double wedge (semi-apex angles of 150/350) and double cone (semi-apex angles of 250/680) models respectively from the CFD results. Experimentally measured convective heat transfer rates on the above models are compared with the numerical simulation results. The numerical simulation results matches well with the experimental heat transfer data in the attached flow regions. Considerable differences are observed between the measured surface heat transfer rates and numerical simulations both in the separated flow region and on the second cone/wedge surfaces. The separation and reattachment points can be clearly identified from both experimental measurements and numerical simulations. The results from the numerical simulations are also compared with results from the high speed flow visualization experiments. The experimental database of surface convective heating rates, direct skin friction coefficient and shockwave structure in laminar hypersonic flow conditions will be very useful for validating CFD codes
43

Experimental Investigation Of The Effect Of Nose Cavity On The Aerothermodynamics Of The Missile Shaped Bodies Flying At Hypersonic Mach Numbers

Saravanan, S 05 1900 (has links)
Hypersonic vehicles are exposed to severe heating loads during their flight in the atmosphere. In order to minimize the heating problem, a variety of cooling techniques are presently available for hypersonic blunt bodies. Introduction of a forward-facing cavity in the nose tip of a blunt body configuration of hypersonic vehicle is one of the most simple and attractive methods of reducing the convective heating rates on such a vehicle. In addition to aerodynamic heating, the overall drag force experienced by vehicles flying at hypersonic speeds is predominate due to formation of strong shock waves in the flow. Hence, the effective management of heat transfer rate and aerodynamic drag is a primary element to the success of any hypersonic vehicle design. So, precise information on both aerodynamic forces and heat transfer rates are essential in deciding the performance of the vehicle. In order to address the issue of both forces and heat transfer rates, right kind of measurement techniques must be incorporated in the ground-based testing facilities for such type of body configurations. Impulse facilities are the only devices that can simulate high altitude flight conditions. Uncertainties in test flow conditions of impulse facilities are some of the critical issues that essentially affect the final experimental results. Hence, more reliable and carefully designed experimental techniques/methodologies are needed in impulse facilities for generating experimental data, especially at hypersonic Mach numbers. In view of the above, an experimental program has been initiated to develop novel techniques of measuring both the aerodynamic forces and surface heat transfer rates. In the present investigation, both aerodynamic forces and surface heat transfer rates are measured over the test models at hypersonic Mach numbers in IISc hypersonic shock tunnel HST-2, having an effective test time of 800 s. The aerodynamic coefficients are measured with a miniature type accelerometer based balance system where as platinum thin film sensors are used to measure the convective heat transfer rates over the surface of the test model. An internally mountable accelerometer based balance system (three and six-component) is used for the measurement of aerodynamic forces and moment coefficients acting on the different test models (i.e., blunt cone with after body, blunt cone with after body and frustum, blunt cone with after body-frustum-triangular fins and sharp cone with after body-frustum-triangular fins), flying at free stream Mach numbers of 5.75 and 8 in hypersonic shock tunnel. The main principle of this design is that the model along with the internally mounted accelerometer balance system are supported by rubber bushes and there-by ensuring unrestrained free floating conditions of the model in the test section during the flow duration. In order to get a better performance from the accelerometer balance system, the location of accelerometers plays a vital role during the initial design of the balance. Hence, axi-symmetric finite element modeling (FEM) of the integrated model-balance system for the missile shaped model has been carried out at 0° angle of attack in a flow Mach number of 8. The drag force of a model was determined using commercial package of MSC/NASTRAN and MSC/PATRAN. For test flow duration of 800 s, the neoprene type rubber with Young’s modulus of 3 MPa and material combinations (aluminum and stainless steel material used as the model and balance) were chosen. The simulated drag acceleration (finite element) from the drag accelerometer is compared with recorded acceleration-time history from the accelerometer during the shock tunnel testing. The agreement between the acceleration-time history from finite-element simulation and measured response from the accelerometer is very good within the test flow domain. In order to verify the performance of the balance, tests were carried out on similar standard AGARD model configurations (blunt cone with cylinder and blunt cone with cylinder-frustum) and the results indicated that the measured values match very well with the AGARD model data and theoretically estimated values. Modified Newtonian theory is used to calculate the aerodynamic force coefficient analytically for various angles of attack. Convective surface heat transfer rate measurements are carried out by using vacuum sputtered platinum thin film sensors deposited on ceramic substrate (Macor) inserts which in turn are embedded on the metallic missile shaped body. Investigations are carried out on a model with and without fin configurations in HST-2 at flow Mach number of 5.75 and 8 with a stagnation enthalpy of 2 MJ/kg for zero degree angle of attack. The measured heating rates for the missile shaped body (i.e., with fin configuration) are lower than the predicted stagnation heating rates (Fay-Riddell expression) and the maximum difference is about 8%. These differences may be due to the theoretical values of velocity gradient used in the empirical relation. The experimentally measured values are expressed in terms of normalized heat transfer rates, Stanton numbers and correlated Stanton numbers, compared with the numerically estimated results. From the results, it is inferred that the location of maximum heating occurs at stagnation point which corresponds to zero velocity gradient. The heat-transfer ratio (q1/Qo)remains same in the stagnation zone of the model when the Mach number is increased from 5.75 to 8. At the corners of the blunt cone, the heat transfer rate doesn’t increase (or) fluctuate and the effects are negligible at two different Mach numbers (5.75 and 8). On the basis of equivalent total enthalpy, the heat-transfer rate with fin configuration (i.e., at junction of cylinder and fins) is slightly higher than that of the missile model without fin. Attempts have also been made to evaluate the feasibility of using forward facing cavity as probable technique to reduce the heat transfer rate and to study its effect on aerodynamic coefficients on a 41° apex angle missile shaped body, in hypersonic shock tunnel at a free stream Mach number of 8. The forward-facing circular cavities with two different diameters of 6 and 12 mm are chosen for the present investigations. Experiments are carried out at zero degree angle of attack for heat transfer measurements. About 10-25 % reduction in heat transfer rates is observed with cavity at gauge locations close to stagnation region, whereas the reduction in surface heat transfer rate is between 10-15 % for all other gauge locations (which is slightly downstream of the cavity) compared with the model without cavity. In order to understand the influence of forward facing cavities on force coefficients, measurement of aerodynamic forces and moment coefficients are also carried out on a missile shaped body at angles of attack. The same six component balance is also being used for subsequent investigation of force measurement on a missile shaped body with forward facing cavity. Overall drag reductions of up to 5 % is obtained for a cavity of 6 mm diameter, where as, for the 12 mm cavity an increase in aerodynamic drag is observed (up to about 10%). The addition of cavity resulted in a slight increase in the missile L/D ratio and did not significantly affect the missile lateral components. In summary, the designed balances are found to be suitable for force measurements on different test models in flows of duration less than a millisecond. In order to compliment the experimental results, axi-symmetric, Navier-Stokes CFD computations for the above-defined models are carried out for various angles of attack using a commercial package CFX-Ansys 5.7. The experimental free stream conditions obtained from the shock tunnel are used for the boundary conditions in the CFD simulation. The fundamental aerodynamic coefficients and heat transfer rates of experimental results are shown to be in good agreement with the predicted CFD. In order to have a feeling of the shock structure over test models, flow visualization experiments have been carried out by using the Schlieren technique at flow Mach numbers of 5.75 and 8. The visualized shock wave pattern around the test model consists of a strong bow shock which is spherical in shape and symmetrical over the forebody of the cone. Experimentally measured shock stand-off distance compare well with the computed value as well as the theoretically estimated value using Van Dyke’s theory. These flow visualization experiments have given a factual proof to the quality of flow in the tunnel test section.
44

Experimental Investigation Of Aerodynamic Interference Heating Due To Protuberances On Flat Plates And Cones Facing Hypersonic Flows

Kumar, Chintoo Sudhiesh 11 1900 (has links) (PDF)
With the age of hypersonic flight imminent just beyond the horizon, researchers are working hard at designing work-arounds for all the major problems as well as the minor quirks associated with it. One such issue, seemingly innocuous but one that could be potentially deadly, is the problem of interference heating due to surface protuberances. Although an ideal design of the external surfaces of a high-speed aircraft dictates complete smoothness to reduce drag, this is not always possible in reality. Control surfaces, sheet joints, cable protection pads etc. generate surface discontinuities of varying geometries, in the form of both protrusions as well as cavities. These discontinuities are most often small in dimension, comparable to the local boundary layer thickness at that location. Such protuberances always experience high rates of heat transfer, and therefore should be appropriately shielded. However, thermal shielding of the protrusions alone is not a full solution to the problem at hand. The interference caused to the boundary layer by the flow causes the generation of local hot spots in the vicinity of the protuberances, which should be properly mapped and adequately addressed. The work presented in this thesis aims at locating and measuring the heat flux values at these hot spots near the protrusions, and possibly formulating empirical correlations to predict the hot spot heat flux for a given set of flow conditions and protrusion geometry. Experimental investigations were conducted on a flat plate model and a cone model, with interchangeable sharp and blunt nose tips, with attached 3D protuberances. Platinum thin-film sensors were placed around the protrusion so that the heat fluxes could be measured in its vicinity and the hottest spot located. These experiments were carried out at five different hypersonic free stream flow conditions generated using two shock tunnels, one of the conventional type, and the other of the free-piston driven type. The geometry of the protrusions, i.e., the height and the deflection angle, was also parametrically varied to study its effect on the hot spot heat flux. The results thus obtained for the flat plate case were compared to existing correlations in the open literature from a similar previous study at a much higher Reynolds number range. Since a mismatch was observed between the results of the current experiments and the existing correlations, a new empirical correlation has been developed to predict the hot spot heat flux, that is valid within the range of flow conditions studied here. A similar attempt was made for the case of the cone model, for which no previous correlations exist in the open literature. However, a global correlation covering the entire range of flow conditions used here could not be formed. A correlation that is valid for just one out of the five flow conditions used here is presented for the cones with sharp and blunt nose tips separately. Schlieren flow visualization was carried out to obtain a better understanding of the shock structures near the protuberances on both models. For most cases, where the protrusion height and deflection angle were large enough to cause flow separation immediately upstream of the protuberance, a separation shock was manifested which deflected some part of the boundary layer above the protuberance, while the rest of the fluid in the boundary layer entered a recirculating region in the separated zone before escaping to the side. Some preliminary computational analysis was conducted which confirmed this qualitatively. However, the quantitative match of surface heat flux between the simulations and experiments were not encouraging. Schlieren visualization revealed that for the flat plate case, the foot of the separation shock was located at a distance of 10.5 to 12 times the protrusion height ahead of it, whereas in the case of the sharp cone, it was at a distance of 9 to 10.5 times the protrusion height. The unsteady nature of the separation shock was also captured and addressed. Some preliminary experiments on boundary layer tripping were also conducted, the results of which have been presented here. From this analysis, it has become evident that a single global correlation cannot be formed which could be used for a wide range of flow conditions to predict the hot spot heat flux in interference interactions. The entire range of conditions that may be encountered during hypersonic flight has to be broken down into sections, and the interference heating pattern should be studied in each of these sections individually. By doing so, a series of different correlations can be formed at the varying flow conditions which will then be available for high-speed aircraft designers.
45

Using Suction for Laminar Flow Control in Hypersonic Quiet Wind Tunnels: A Feasibility Study

Phillip Portoni (7399604) 16 October 2019 (has links)
<div>To reduce the risk of using suction in a hypersonic quiet-tunnel nozzle design, this project tested micro-perforated suction sections to remove the boundary layer on an axisymmetric model in the Boeing/AFOSR Mach-6 Quiet Tunnel. The model was a cone-flare geometry tested at 0° angle of attack. The turn from the 7° half-angle cone to the flare was designed to prevent flow separation. The flare was designed to amplify the Görtler instability.</div><div><br></div><div>Five suction sections were designed with different perforation patterns and porosities. Four were successfully manufactured, but only the first of the four sections has been tested so far. The first suction section has pores drilled along straight lines with a nominal 5% porosity.</div><div><br></div><div>Measurements were made with temperature-sensitive paint and oil-flow visualization on a non-perforated blank to measure the baseline development of Görtler vortices on the flare. Although the signal-to-noise ratio of the measurement techniques were insufficient to measure the vortices, it was confirmed that the boundary layer is laminar for the entire model. Measurements with suction also did not show the Görtler vortices.</div><div><br></div><div>Surface pressure fluctuations were measured on the flare. Apparent second-mode waves were detected. The suction measurements showed a slight increase in second-mode peak frequency over the baseline results, as expected.</div><div><br></div><div>Concerns had been raised about acoustic noise that might be radiated from the suction section. Thus, fluctuations above the suction section were measured using a pitot probe and using focused-laser differential interferometry. The measurements during suction showed no noticeable increase in fluctuations compared to the baseline results.</div>
46

A study of premixed, shock-induced combustion with application to hypervelocity flight

Axdahl, Erik Lee 13 January 2014 (has links)
One of the current goals of research in hypersonic, airbreathing propulsion is access to higher Mach numbers. A strong driver of this goal is the desire to integrate a scramjet engine into a transatmospheric vehicle airframe in order to improve performance to low Earth orbit (LEO) or the performance of a semi-global transport. An engine concept designed to access hypervelocity speeds in excess of Mach 10 is the shock-induced combustion ramjet (i.e. shcramjet). This dissertation presents numerical studies simulating the physics of a shcramjet vehicle traveling at hypervelocity speeds with the goal of understanding the physics of fuel injection, wall autoignition mitigation, and combustion instability in this flow regime. This research presents several unique contributions to the literature. First, different classes of injection are compared at the same flow conditions to evaluate their suitability for forebody injection. A novel comparison methodology is presented that allows for a technically defensible means of identifying outperforming concepts. Second, potential wall cooling schemes are identified and simulated in a parametric manner in order to identify promising autoignition mitigation methods. Finally, the presence of instabilities in the shock-induced combustion zone of the flowpath are assessed and the analysis of fundamental physics of blunt-body premixed, shock-induced combustion is accelerated through the reformulation of the Navier Stokes equations into a rapid analysis framework. The usefulness of such a framework for conducting parametric studies is demonstrated.
47

EFFECT OF ANGLE OF ATTACK ON INSTABILITY AND TRANSITION ON A FINITE-SPAN COMPRESSION RAMP IN QUIET HYPERSONIC FLOW

Adelbert Ayars Francis III (16648539) 26 July 2023 (has links)
<p>This research focuses on experiments on compression-induced shock wave/boundary-layer interactions conducted in the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) at Purdue University. The BAM6QT facilitates a low-freestream-noise hypersonic test environment more similar to that experienced in flight than a conventional wind tunnel. Measurements were captured on two sliced 7° half-angle cones with finite-span compression ramps. On the first, the slice was cut parallel to the axis of the cone to build upon previous measurements in hypersonic flow. While similar geometries have been analyzed for over 30 years in experiment and computation, there are significant gaps in understanding of the underlying mechanisms leading to instability and transition on the ramp. Further, in low-noise Mach 6 flow, the boundary layer separated at the leading edge of the slice, which is unlikely to occur on a real flight vehicle. Thus, on the second model, the slice was cut at a 4° incline to the</p> <p>cone axis to facilitate the growth of an attached laminar boundary layer on the slice. Using this configuration, the ramp-induced boundary-layer thickening initiated between the slice leading edge and the ramp leading edge, allowing the investigation of a ‘naturally’ formed separated region. </p> <p><br></p> <p>Data were captured at angles of attack ranging from 0° to 6°, on compression ramp angles ranging from 10° to 20°, and for freestream Reynolds numbers of 2.5×10^6/m to 12×10^6/m. To analyze the mean-flow behavior of the separation bubble as it changes with the above parametrics, time-averaged schlieren visualization was used to provide off-surface visualization of the flowfield, allowing estimates of reattachment position and separation bubble size. In all cases, reattachment position was shown to move upstream with an increase in angle of attack, an increase in ramp angle, and an increase in Reynolds number. However, on the model with the inclined slice, the Reynolds number impacted reattachment location to a much lesser extent. </p> <p><br></p> <p>Heat transfer measurements on the ramp revealed regions with the most significant aerothermal loading. Streamwise streaks of high heating originating at the ramp edges and centerline were observed to increase in magnitude with an increase in Reynolds number, angle of attack, and ramp angle. On the model with the inclined slice, many streaks of high heating were observed that increased in quantity and magnitude with angle of attack and ramp angle. Root mean squared pressure fluctuations computed from surface pressure measurements were shown to follow similar trends to centerline heat transfer results for both models. Angle of attack, ramp angle, and slice angle are shown to play a dominant role in transition. Finally, the importance of quiet tunnels is made remarkably clear, as the BAM6QT operating in its conventional-noise configuration resulted in drastically different results.</p> <p><br></p> <p>For measurement of shock wave/boundary-layer instabilities, schlieren frames were captured at 100,000 fps to allow measurement of low-to-mid-frequency fluctuations of the recirculation zone edge. Shear layer flapping frequencies were found to occur at around 1100–1200 Hz, which increased with angle of attack to up to 1600 Hz. It is likely that this is an inherent instability in the separation bubble itself, rather than a function of freestream disturbances, and may be indicative of an ‘expansion and relaxation’ effect known as bubble breathing. Additional measurements using low-frequency-capable pressure sensors must be captured to determine whether this breathing effect manifests on the model slice or ramp. </p>
48

CBAS: A Multi-Fidelity Surrogate Modeling Tool For Rapid Aerothermodynamic Analysis

Tyler Scott Adams (18423228) 23 April 2024 (has links)
<p dir="ltr"> The need to develop reliable hypersonic capabilities is of critical import today. Among the most prominent tools used in recent efforts to overcome the challenges of developing hypersonic vehicles are NASA's Configuration Based Aerodynamics (CBAERO) and surrogate modeling techniques. This work presents the development of a tool, CBAERO Surrogate (CBAS), which leverages the advantages of both CBAERO and surrogate models to create a simple and streamlined method for building an aerodynamic database for any given vehicle geometry. CBAS is capable of interfacing with CBAERO directly and builds Kriging or Co-Kriging surrogate models for key aerodynamic parameters without significant user or computational effort. Two applicable geometries representing hypersonic vehicles have been used within CBAS and the resulting Kriging and Co-Kriging surrogate models evaluated against experimental data. These results show that the Kriging model predictions are accurate to CBAERO's level of fidelity, while the Co-Kriging model predictions fall within 0.5%-5% of the experimental data. These Co-Kriging models produced by CBAS are 10%-50% more accurate than CBAERO and the Kriging models and offer a higher fidelity solution while maintaining low computational expense. Based on these initial results, there are promising advancements to obtain in future work by incorporating CBAS to additional applications.</p>
49

Numerical Investigations of Transition in Hypersonic Flows over Circular Cones

Husmeier, Frank January 2008 (has links)
This thesis focuses on secondary instability mechanisms of high-speed boundary layers over cones with a circular cross section. Hypersonic transition investigations at Mach 8 are performed using Direct Numerical Simulations (DNS). At wind-tunnel conditions, these simulations allow for comparison with experimental measurements to verify fundamental stability characteristics.To better understand geometrical influences, flat-plate and cylindrical geometries are studied using after-shock conditions of the conical investigations. This allows for a direct comparison with the results of the sharp cone to evaluate the influence of the spanwise curvature and the cone opening angle. The ratio of the boundary-layer thickness to the spanwise radius is used to determine the importance of spanwise curvature effects. When advancing in the downstream direction the radius increaseslinearly while the boundary-layer thickness stays almost constant. Hence, spanwise curvature effects are strongest close to the nose and decrease in downstream direction. Their influences on the secondary instability mechanisms provide some rudimentary guidance in the design of future high-speed air vehicles.In experiments, blunting of the nose tip of the circular cone results in an increase in critical Reynolds number (c.f. Stetson et al. (1984)). However, once a certain threshold of the nose radius is exceeded, the critical Reynolds number decreases even to lower values than for the sharp cone. So far, conclusive explanations for this behavior could not be derived based on the available experimental data. Therefore, here DNS is used to study the effect of nose bluntness on secondary instability mechanisms in order to shed light on the underlying flow physics. To this end, three different nose tip radii are considered-the sharp cone, a small nose radius and a large nose radius. A small nose radius moves the transition on-set downstream, while for a large nose radius the so-called transition reversal is observed. Experimentalists hold influences of the entropy layer responsible but detailed numerical studies may lead to alternateconclusions.
50

Liquid crystal thermography in high speed flows

Schuricht, Paul Hans January 1999 (has links)
No description available.

Page generated in 0.4472 seconds