• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 91
  • 42
  • 26
  • 26
  • 25
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Biogene Steuerung ökologischer Systemeigenschaften des hyporheischen Interstitials der Lahn (Hessen)

Ibisch, Ralf B. 20 November 2004 (has links) (PDF)
In der vorliegenden Arbeit wurde die Beeinflussung der Wechselwirkungen zwischen Oberflächenwasser, Interstitial und Grundwasser durch eutrophierungsbedingte Kolmationszyklen in einem anthropogen belasteten Fließgewässer (Lahn, Hessen) untersucht. Dabei wurden Mesokosmosexperimente und Freilanduntersuchungen an einer hyporhithralen Pool-Riffle-Sequenz miteinander kombiniert und die Ergebnisse vergleichend interpretiert. Im Rahmen der Arbeit wurde ein experimenteller Versuchsstand aufgebaut, der aus einer kontinuierlich durchströmten Sedimentsäule bestand und in einem mobilen Laborcontainer an der Lahn installiert war. Mit Hilfe dieses mesoskaliges Sedimentkörperexperimentes wurden jahreszeitliche Verlaufsmuster der inneren Kolmation analysiert, parametrisiert und mit physikalischen (Schwebstoffdynamik) und biologischen Kolmationskomponenten in Beziehung gesetzt. Besonderer Fokus lag dabei auf der Entwicklung des Periphytons, das in eutrophierten Fliessgewässern verstärkender Faktor der Kolmation werden kann. Ferner ließ sich mit dem aufgebauten Sedimentkörperexperiment der Einfluss von Kolmation auf Stoffumsetzungsprozesse (O2) im Interstitial modellhaft erfassen. In einem zweiten mesoskaligen Versuchsstand wurde die Bedeutung der hyporheischen Meiofauna für biogene Dekolmationsvorgänge (Fraß und Bioturbation) untersucht.
62

Biogene Steuerung ökologischer Systemeigenschaften des hyporheischen Interstitials der Lahn (Hessen)

Ibisch, Ralf B. 28 July 2004 (has links)
In der vorliegenden Arbeit wurde die Beeinflussung der Wechselwirkungen zwischen Oberflächenwasser, Interstitial und Grundwasser durch eutrophierungsbedingte Kolmationszyklen in einem anthropogen belasteten Fließgewässer (Lahn, Hessen) untersucht. Dabei wurden Mesokosmosexperimente und Freilanduntersuchungen an einer hyporhithralen Pool-Riffle-Sequenz miteinander kombiniert und die Ergebnisse vergleichend interpretiert. Im Rahmen der Arbeit wurde ein experimenteller Versuchsstand aufgebaut, der aus einer kontinuierlich durchströmten Sedimentsäule bestand und in einem mobilen Laborcontainer an der Lahn installiert war. Mit Hilfe dieses mesoskaliges Sedimentkörperexperimentes wurden jahreszeitliche Verlaufsmuster der inneren Kolmation analysiert, parametrisiert und mit physikalischen (Schwebstoffdynamik) und biologischen Kolmationskomponenten in Beziehung gesetzt. Besonderer Fokus lag dabei auf der Entwicklung des Periphytons, das in eutrophierten Fliessgewässern verstärkender Faktor der Kolmation werden kann. Ferner ließ sich mit dem aufgebauten Sedimentkörperexperiment der Einfluss von Kolmation auf Stoffumsetzungsprozesse (O2) im Interstitial modellhaft erfassen. In einem zweiten mesoskaligen Versuchsstand wurde die Bedeutung der hyporheischen Meiofauna für biogene Dekolmationsvorgänge (Fraß und Bioturbation) untersucht.
63

Grain-Size and Permeability of Sediments Within the Hyporheic Zone at the Theis Environmental Monitoring and Modeling Site, Great Miami River and Buried Valley Aquifer, Southwest Ohio, USA

Cornett, Timothy Wayne January 2021 (has links)
No description available.
64

Complexity in river-groundwater exchange due to permeability heterogeneity, in-stream flow obstacles, and river stage fluctuations

Sawyer, Audrey Hucks 13 July 2011 (has links)
River-groundwater exchange (hyporheic exchange) influences temperature, water chemistry, and ecology within rivers and alluvial aquifers. Rates and patterns of hyporheic exchange depend on riverbed permeability, pressure gradients created by current-obstacle interactions, and river stage fluctuations. I demonstrate the response of hyporheic exchange to three examples of these driving forces: fine-scale permeability structure in cross-bedded sediment, current interactions with large woody debris (LWD), and anthropogenic river stage fluctuations downstream of dams. Using numerical simulations, I show that cross-bedded permeability structure increases hyporheic path lengths and modifies solute residence times in bedforms. The tails of residence time distributions conform to a power law in both cross-bedded and internally homogeneous riverbed sediment. Current-bedform interactions are responsible for the decade-scale tails, rather than permeability heterogeneity. Like bedforms, wood debris interacts with currents and drives hyporheic exchange. Laboratory flume experiments and numerical simulations demonstrate that the amplitude of the pressure wave (and thus hyporheic exchange) due to a channel-spanning log increases with channel Froude number and blockage ratio (log diameter : flow depth). Upstream from LWD, downwelling water transports the river’s diel thermal signal deep into the sediment. Downstream, upwelling water forms a wedge of buffered temperatures. Hyporheic exchange associated with LWD does not significantly impact diel surface water temperatures. I tested these fluid and heat flow relationships in a second-order stream in Valles Caldera National Preserve (NM). Log additions created alternating zones of upwelling and downwelling in a reach that was previously losing throughout. By clearing LWD from channels, humans have reduced hydrologic connectivity at the meter-scale and contributed to degradation of benthic and hyporheic habitats. Dams also significantly alter hydrologic connectivity in modern rivers. Continuous water table measurements show that 15 km downstream of the Longhorn dam (Austin, Texas), river stage fluctuations of almost 1 m induce a large, unsteady hyporheic exchange zone within the bank. Dam-induced hyporheic exchange may impact thermal and geochemical budgets for regulated rivers. Together, these three case studies broaden our understanding of complex drivers of hyporheic exchange in small, natural streams as well as large, regulated rivers. / text
65

Impact of fine sediment and nutrient input on the hyporheic functionality:: A case study in Northern Mongolia

Hartwig, Melanie 11 April 2016 (has links)
The hyporheic interstitial was recognized as an integral zone within the aquatic ecosystem bearing important functions for both adjacent compartments, surface and ground water, about 50 years ago. Since then, rather disciplinary works gained knowledge on the organismic community of this ecotone, its spatial extent, the role of distinct parameters such as hydrology and morphology, temporal characteristics, process dynamics, the role for stream or groundwater quality and restoration measures. However, a systematic study on the risks to the hyporheic functions was missing to date. This thesis combined existing methods in order to gather an integrated set of information allowing for the assessment of the ecotonal status. This approach was applied to investigate the functional behavior towards stressors like increasing nutrient and fine sediment input into a rather pristine environment. An interdisciplinary risk assessment and the establishment of adapted measures was called for as land-use scenarios for the studied catchment area indicated progressive onland erosion. Therefore firstly, an integrated monitoring scheme was drawn up and conducted at three sites along a river that underlay a stressor gradient such as mentioned before. Secondly, the data sets were analysed in order to evaluate the status of the hyporheic funtions at the riffles. Thirdly, a coupled surface-subsurface modelling approach was set up to further study the impact of the stressors on the ecotonal integrity. And fourthly, an interdisciplinary consideration combined with studies on the catchments sediment budget and the rivers ecological status was applied to identify measures for the restoration and protection of the aquatic ecosystem. The analysis of the data gathered with the help of the established monitoring scheme revealed that elevated nutrient or fine sediment input lead to biological or physical clogging, respectively, with consequences for the hyporheic zone functions. The surface - ground water connectivity was either lowered in summer months, when biofilm growth was highest, or permanently, as fine sediment particles infiltrated into the interstices of the riverbed sediment. Scouring did not seem to take place as high amounts of fine particles were found in the matrix after discharge events of snowmelt and summer precipitation. With respect to the biogeochemical regulation function, biofilm material appeared to provide an autochthonous carbon source boosting microbial substance turnover. The sediment underneath the physical clogged layer was cut off from carbon and oxygen rich surface water and thus was not reactive. However, the enhanced surface area provided by the fine sediment within the topmost sediment layer seemed to support microbial processing. The inclusion of the results of a study concerning the ecological status at the investigated reaches lead to the deduction that biological clogging at the present degree was not affecting habitat quality. Whereas the physical clogging had tremendeous and lasting effects on the macroinvertebrate community which carries to the conclusion that sediment management within the studied catchment is of uttermost importance. A scenario analysis reflecting distinct clogging degrees and types with a calibrated model of a studied riffle within a pristine reach proved the observed loss of hydrologic connectivity due to physical and biological clogging. Further, a treshold of oxygen consumption rates above which the reproduction of salmonid fish would be unsuccessful was identified for the settings of the middle reaches. In summer month with low discharge it seemed to be likely that this treshold might be reached. Following, a dynamic discharge may be decisive to protect the ecotonal integrity. The integration with the outcome of an investigation regarding the sediment sources within the catchment allowed for two suggestions. On the one hand, river bank restoration and protection within the middle reaches need to be prioritised, and on the other hand, the conservation of the natural vegetation at the steep slopes within the mountaineous areas need to be undertaken in order to secure the pristine aquatic environment of this area. Hyporheic zone research of the last decade was driven by testing hypotheses on the functional significance of distinct spatial and temporal configurations in the field and by new modelling approaches. However, data on the quantification of the ecological impact of clogging processes were lacking. The thesis contributed to the systemic understanding of the hyporheic zone being affected by physical and biological clogging and new field data within a degrading pristine environment were generated, accessible for further hyporheic research. The interdisciplinarity enabled comprehensive statements for the usage of an Integrated Water Resources Management plan.
66

A Post-Project Assessment of the Provo River Restoration Project: Channel Design, Reconfiguration, and the Re-Establishment of Critical Physical Processes

Goetz, Randy Ray 01 May 2008 (has links)
A physical assessment of the Provo River Restoration Project was undertaken in order to determine how alterations to the channel were designed, the nature of as-built channel morphology, and the performance of the reconfigured channel in terms of achieving frequent (2-year recurrence) bankfull discharge and increasing transient storage. Measures of channelized and reconfigured channel morphology were obtained using total station survey, digital aerial photography, and pebble counts. Results of geomorphic analysis were compared with similar measurements made by a regional consulting company, and stream channel design data, in order to determine that intended mitigation included reducing channel capacity, increasing sinuosity, decreasing pool spacing, and decreasing the size of bed material. Reconfiguration of the channel resulted in somewhat enlarged cross-sections with reduced mean velocities, increased sinuosity, decreased pool spacing, and decreased bed substrate size. One-dimensional hydraulic modeling suggests that alterations to channel morphology have increased the bankfull channel capacity in most reaches. Modeling results illustrate the fact that the stage of the 2-year recurrence flood is below bankfull at most cross-sections. This result does not follow the intentions of channel design. However, we have observed floodplain inundation in most years since reconfiguration. The occurrence floodplain inundation is being facilitated by overbank flow at a few point locations illustrating the strengths of incorporating variability into design. Known geomorphic controls on transient storage were reconfigured in manner to potentially increase in-channel and hyporheic components of transient storage. Stream tracer tests were utilized in order to determine the degree to which these alterations affected transient storage. Numerical analysis of stream tracer tests suggests that while the relative area of transient storage increased, average residence time of water in storage, and the mass transfer rate of solute between storage and the stream did not change. This suggests that an extensive hyporheic zone may not have been established. Correlations between hydrologic and geomorphic parameters indicate that in-stream storage may have been increased, and quick-exchange hyporheic flowpaths may have been created. (295 pages)
67

Surface Water-Groundwater Exchange and its Effect on Nitrogen Transformation in the Tidal Freshwater Zone

Wallace, Corey D. 17 October 2019 (has links)
No description available.
68

Abundance, Distribution, and Geometry of Naturally Occurring Macropores in Stream Banks

McEwen, Amiana Marie 13 June 2018 (has links)
Preferential flow paths are areas of substantially higher permeability than surrounding media. Macropores and soil pipes are a type of preferential flow path where conduit-like voids in the subsurface are typically greater than three millimeters in diameter. They are known to occur in agricultural and forest soils, often as a result of biological and physical processes. Macropores also exist in stream banks and have the potential to enhance the exchange of water and solutes between the channel and riparian groundwater, yet the geographic distribution of bank macropores is unknown. Here we determined the abundance, distribution, and geometry of naturally occurring surface-connected macropores in the banks of 20 streams across five physiographic provinces in the Eastern United States. We identified a total of 1,748 macropores, which were present in all 20 streams, with 3.8 cm average width, 3.3 cm average height, 11.5 cm average depth, and 27.9 cm average height above water surface elevation. Macropore abundance, distribution and geometry were statistically different between physiographic provinces, stream orders, and soil textures, with the latter being the most important. Macropores tended to be larger and more abundant in soils with a high cohesiveness and a low hydraulic conductivity compared to soils with a low cohesiveness and high hydraulic conductivity. As a result, streams with greater longitudinal heterogeneity of soil texture also had greater heterogeneity of macropore density. However, macropore size and height above baseflow water surface elevation also increased with stream order and therefore stream size. This work represents the first attempt to characterize macropores across a variety of riverine systems and presents evidence that macropores may play an important role in hyporheic exchange within stream banks. These results may have water quality implications, where macropores may enhance hyporheic exchange yet reduce the filtering capacity of riparian buffer zones. / MS / Preferential flow paths are soil cavities or areas of highly permeable porous media surrounded by media with a significantly lower permeability. Macropores are a type of preferential flow path where conduit-like voids in the subsurface are typically greater than three millimeters in diameter. Their formation is often the result of biological processes, such as animal burrows and plant roots, erosive action in subsurface flow, or cracks in the soil, and can enable rapid movement of water. Macropores are known to exist in stream banks and have the potential to enhance the exchange of water and solutes between the stream channel and riparian groundwater, yet the geographic distribution of bank macropores is unknown. This research examines the distribution, abundance, and geometry of naturally occurring macropores in the banks of 20 streams across five physiographic provinces in the eastern United States. Macropores were present in all 20 streams despite variations in physiographic province, stream order, and soil texture. However, soil texture appeared to have the greatest influence on the distribution, abundance, and geometry of macropores. For example, soils primarily containing silt and clay had more macropores than soils consisting of sand or gravel. We suspect this is due to differences in soil cohesiveness and/or hydraulic conductivity. This work represents the first attempt to characterize macropores across a variety of riverine systems and presents evidence that macropores may play an important role in surface water and groundwater exchange within stream banks. These results may have water quality implications, for example, how macropores affect the pollutant filtering capacity of riparian buffer zones.
69

Groundwater-stream water interactions: point and distributed measurements and innovative upscaling technologies

Gaona Garcia, Jaime 27 June 2019 (has links)
The need to consider groundwater and surface water as a single resource has fostered the interest of the scientific community on the interactions between surface water and groundwater. The region below and alongside rivers where surface hydrology and subsurface hydrology concur is the hyporheic zone. This is the region where water exchange determines many biogeochemical and ecological processes of great impact on the functioning of rivers. However, the complex processes taking place in the hyporheic zone require a multidisciplinary approach. The combination of innovative point and distributed techniques originally developed in separated disciplines is of great advantage for the indirect identification of water exchange in the hyporheic zone. Distributed techniques using temperature as a tracer such as fiber-optic distributed temperature sensing can identify the different components of groundwater-surface water interactions based on their spatial and temporal thermal patterns at the sediment-water interface. In particular, groundwater, interflow discharge and local hyporheic exchange flows can be differentiated based on the distinct size, duration and sign of the temperature anomalies. The scale range and resolution of fiber-optic distributed temperature sensing are well complemented by geophysics providing subsurface structures with a similar resolution and scale. Thus, the use of fiber-optic distributed temperature sensing to trace flux patterns supported by the exploration of subsurface structures with geophysics enables spatial and temporal investigation of groundwater-surface water interactions with an unprecedented level of accuracy and resolution. In contrast to the aforementioned methods that can be used for pattern identification at the interface, other methods such as point techniques are required to quantify hyporheic exchange fluxes. In the present PhD thesis, point methods based on hydraulic gradients and thermal profiles are used to quantify hyporheic exchange flows. However, both methods are one-dimensional methods and assume that only vertical flow occurs while the reality is much more complex. The study evaluates the accuracy of the available methods and the factors that impact their reliability. The applied methods allow not only to quantify hyporheic exchange flows but they are also the basis for an interpretation of the sediment layering in the hyporheic zone. For upscaling of the previous results three-dimensional modelling of flow and heat transport in the hyporheic zone combines pattern identification and quantification of fluxes into a single framework. Modelling can evaluate the influence of factors governing groundwater-surface water interactions as well as assess the impact of multiple aspects of model design and calibration of high impact on the reliability of the simulations. But more importantly, this modelling approach enables accurate estimation of water exchange at any location of the domain with unparalleled resolution. Despite the challenges in 3D modelling of the hyporheic zone and in the integration of point and distributed data in models, the benefits should encourage the hyporheic community to adopt an integrative approach comprising from the measurement to the upscaling of hyporheic processes.
70

Flow, nutrient, and stable isotope dynamics of groundwater in the parafluvial/hyporheic zone of a regulated river during a small pulse

Briody, Alyse Colleen 27 October 2014 (has links)
Periodic releases from an upstream dam cause rapid stage fluctuations in the Colorado River near Austin, Texas. These daily pulses modulate fluid exchange and residence times in the hyporheic region, where biogeochemical reactions are pronounced. We installed two transects of wells perpendicular to the river to examine in detail the reactions occurring in this zone of surface-water and groundwater exchange. One well transect recorded physical water level fluctuations and allowed us to map hydraulic head gradients and fluid movement. The second transect allowed for water sample collection at three discrete depths. Samples were collected from 12 wells every 2 hours for a 24-hour period and were analyzed for nutrients, carbon, major ions, and stable isotopes. The results provide a detailed picture of biogeochemical processes in the bank environment during low flow/drought conditions in a regulated river. Findings indicate that a pulse that causes a change in river stage of approximately 16-centimeters does not cause significant mixing in the bank. Under these conditions, the two systems act independently and exhibit only slight mixing at the interface. / text

Page generated in 0.0249 seconds