• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 2
  • Tagged with
  • 25
  • 18
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelagem e simulação de processos de separação a altas pressões: aplicações com Aspen hysys

CUNHA, Vânia Maria Borges January 2014 (has links)
Submitted by Cássio da Cruz Nogueira (cassionogueirakk@gmail.com) on 2017-02-13T14:55:17Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-15T15:00:28Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5) / Made available in DSpace on 2017-02-15T15:00:28Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_ModelagemSimulacaoProcessos.pdf: 2691666 bytes, checksum: 7d7b152f8bdd96c51cda9787a6d9a5e0 (MD5) Previous issue date: 2014 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, foi elaborada uma base de dados de parâmetros de interação binária de diferentes regras de mistura, para as equações de estado de Soave-Redlich-Kwong (SRK) e Peng-Robinson (PR), a partir de dados experimentais de sistemas binários e multicomponentes de hidrocarbonetos, N2, CO2, água, β-caroteno, etanol, acetona e metanol, com objetivo de aplicar em simulações com o Aspen Hysys aos processos de fracionamento do gás natural em um processo de turbo-expansão simplificado; de fracionamento de óleo, gás e água, em separador trifásico, de extração com CO2 supercrítico de acetona de uma solução aquosa e de β-caroteno de uma solução aquosa, em coluna de multiestágios em contracorrente. De modo geral, não ocorreram diferenças significativas na predição do equilibro de fases dos sistemas binários estudados, para ambas as equações, com as regras de mistura quadrática, Mathias-Klotz-Prausnitz (MKP) com dois e três parâmetros. Cabe destacar que a regra de mistura MKP com 3 parâmetros de interação binária apresentou os menores erros absolutos para os sistemas binários de hidrocarbonetos e CO2/ hidrocarbonetos. Para os ajustes de dados de equilíbrio dos sistemas multicomponentes de hidrocarbonetos, a equação de SRK combinada com a regra de mistura quadrática com 2 parâmetros de interação binária, foi a que apresentou os menores erros médios para os sistemas ternários e para o sistema com 5 componentes em ambas as fases. No estudo de caso do separador trifásico a equação de SRK com a regra de mistura RK-Aspen foi a que apresentou a maior separação da fase aquosa de todas as simulações (285,68 kg/h) contra 256,88 kg/h para a equação SRK, 249,81 kg/h para a equação PR e 152,90 kg/h para a equação PRSV, confirmando a grande influência do uso da matriz de parâmetros de interação binária determinada neste trabalho, com destaque para os parâmetros que representam as interações entre os hidrocarbonetos com a água. Os resultados das simulações com a planta simplificada de turbo-expansão estão de acordo com a análise descrita na literatura, apresentando as seguintes taxas de recuperação de etano: 84,045% para PRSV, 84,042% para SRK, 84,039% para TST e PR e 83,98% para RKAspen. O produto final da simulação publicada na literatura para o fracionamento de uma solução aquosa de acetona utilizando o processo de extração com CO2 supercrítico consistiu na corrente de saída do fundo da coluna de destilação a 65 atm (6586 kPa), com uma composição de 67,67 % de CO2 (74,3 kg/h), 31,11% de acetona (34,15 kg/h) e 1,21% (1,33 kg/h) de água em base mássica. Na simulação com o Aspen Hysys a corrente de saída da coluna de destilação foi submetida a um conjunto de separadores flash para a separação do CO2 atingindo a recuperação de 27 kg/h de acetona em três correntes (11,14 e 15) com menos de 5 kg/h residuais de CO2 e 0,8 kg/h de água. O fracionamento da solução aquosa de β- caroteno foi simulado com o Aspen Hysys, com uma coluna de múltiplos estágios em contracorrente e um separador flash vertical para a separação do CO2. As simulações convergiram com, no mínimo, cinco estágios. Foi obtida uma corrente de fundo (produto) do separador flash com 97,83% de β-caroteno contra 89,95% em massa, para a simulação de um extrator de um único estágio publicada na literatura. / The purpose of this work was to elaborate a database of binary interaction parameters of different mixing rules, for the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) equations of state, using experimental data of binary and multicomponent systems of hydrocarbons, N2, CO2, water, β-carotene, ethanol, acetone and methanol, in order to apply in simulations with the Aspen Hysys fractionation processes, of natural gas into a simplified turbo-expansion process; fractionation of oil, gas and water, in three-phase separator, supercritical CO2 extraction of acetone from an aqueous solution and β-carotene from an aqueous solution in multistage countercurrent column. In general, there were no significant differences, to both equations, in the phase equilibrium prediction of the binary systems studied, between the quadratic and Mathias-Klotz-Prausnitz (MKP) mixing rules with two and three parameters. It is worth mentioning that the MKP mixing rule with 3 binary interaction parameters presented the smallest absolute errors for hydrocarbon binary systems and CO2/hydrocarbons systems. For the settings of hydrocarbons phase equilibrium multicomponent systems data, the SRK equation combined with quadratic mixture rule with 2 binary interaction parameters, was presented the lowest average errors for ternary systems and for system with 5 components in both phases. In the case study of three-phase separator the SRK equation with the mixing rule RK-Aspen was the one that presented the greater separation of the aqueous phase of all simulations (285.68 kg/h) against 256.88 kg/h to the SRK equation, 249.81 kg/h for the PR equation and 152.90 kg/h to PRSV equation, confirming the great influence of the use the binary interaction parameters matrix determined in this work, with emphasis on the parameters that represent the interactions between the hydrocarbons with water. The results of the simulations with the simplified plant turboexpansion are according to the analysis described in the literature showing the following recovery rates of ethane: 84.045% to PRSV, 84.042% for SRK, 84.039% for TST and PR and 83.98% for RK-Aspen. The final product of the simulation published in the literature for the fractionation of an aqueous solution of acetone by using supercritical CO2 extraction process consisted in the output current from the bottom of the distillation column at 65 atm (6586 kPa), with a composition of 67.67% CO2 (74.3 kg/h), 31.11% of acetone (34.15 kg/h) and 1.21% (1.33 kg/h) of water in mass base. In the simulation with Aspen Hysys the output current of the distillation column was subjected to a set of flash separators for separation of CO2 reaching the recovery of 27 kg/h of acetone in three currents (11.14 and 15) with less than 5 kg/h CO2 waste and 0.8 kg/h of water. The fractionation of aqueous solution of β- carotene was simulated with the Aspen Hysys, with a multistage countercurrent column and a vertical flash separator for separation of CO2. The simulations have converged with a minimum of five stages. It was retrieved from an underflow (product) flash separator with 97.83% of β-carotene against 89.95% by mass for the simulation of an extractor of a single stage published in the literature.
12

MODELING AND OPTIMIZATION OF CRUDE OIL DESALTING

Ilkhaani, Shahrokh 06 November 2014 (has links)
When first received by a refinery, the crude oil usually contains some water, mineral salts, and sediments. The salt appears in different forms, most often times it is dissolved in the formation water that comes with the crude i.e. in brine form, but it could also be present as solid crystals, water-insoluble particles of corrosion products or scale and metal-organic compounds such as prophyrins and naphthenates. The amount of salt in the crude can vary typically between 5 to 200 PTB depending on the crude source, API, viscosity and other properties of the crude. For the following reasons, it is of utmost importance to reduce the amount of salt in the crude before processing the crude in the Crude Distillation Unit and consequently downstream processing units of a refinery. 1. Salt causes corrosion in the equipment. 2. Salt fouls inside the equipment. The fouling problem not only negatively impacts the heat transfer rates in the exchangers and furnace tubes but also affects the hydraulics of the system by increasing the pressure drops and hence requiring more pumping power to the system. Salt also plugs the fractionator trays and causes reduced mass transfer i.e. reduced separation efficiency and therefore need for increased re-boiler/condenser duties. 3. The salt in the crude usually has a source of metallic compounds, which could cause poisoning of catalyst in hydrotreating and other refinery units. Until a few years ago, salt concentrations as high as 10 PTB (1 PTB = 1 lb salt per 1000 bbl crude) was acceptable for desalted crude; However, most of the refineries have adopted more stringent measures for salt content and recent specs only allow 1 PTB in the desalted crude. This would require many existing refineries to improve their desalting units to achieve the tighter salt spec. This study will focus on optimizing the salt removal efficiency of a desalting unit which currently has an existing single-stage desalter. By adding a second stage desalter, the required salt spec in the desalted crude will be met. Also, focus will be on improving the heat integration of the desalting process, and optimization of the desalting temperature to achieve the best operating conditions in the plant after revamp.
13

Development and demonstration of a new non-equilibrium rate-based process model for the hot potassium carbonate process.

Ooi, Su Ming Pamela January 2009 (has links)
Chemical absorption and desorption processes are two fundamental operations in the process industry. Due to the rate-controlled nature of these processes, classical equilibrium stage models are usually inadequate for describing the behaviour of chemical absorption and desorption processes. A more effective modelling method is the non-equilibrium rate-based approach, which considers the effects of the various driving forces across the vapour-liquid interface. In this thesis, a new non-equilibrium rate-based model for chemical absorption and desorption is developed and applied to the hot potassium carbonate process CO₂ Removal Trains at the Santos Moomba Processing Facility. The rate-based process models incorporate rigorous thermodynamic and mass transfer relations for the system and detailed hydrodynamic calculations for the column internals. The enhancement factor approach was used to represent the effects of the chemical reactions. The non-equilibrium rate-based CO₂ Removal Train process models were implemented in the Aspen Custom Modeler® simulation environment, which enabled rigorous thermodynamic and physical property calculations via the Aspen Properties® software. Literature data were used to determine the parameters for the Aspen Properties® property models and to develop empirical correlations when the default Aspen Properties® models were inadequate. Preliminary simulations indicated the need for adjustments to the absorber column models, and a sensitivity analysis identified the effective interfacial area as a suitable model parameter for adjustment. Following the application of adjustment factors to the absorber column models, the CO₂ Removal Train process models were successfully validated against steady-state plant data. The success of the Aspen Custom Modeler® process models demonstrated the suitability of the non-equilibrium rate-based approach for modelling the hot potassium carbonate process. Unfortunately, the hot potassium carbonate process could not be modelled as such in HYSYS®, Santos’s preferred simulation environment, due to the absence of electrolyte components and property models and the limitations of the HYSYS® column operations in accommodating chemical reactions and non-equilibrium column behaviour. While importation of the Aspen Custom Modeler® process models into HYSYS® was possible, it was considered impractical due to the significant associated computation time. To overcome this problem, a novel approach involving the HYSYS® column stage efficiencies and hypothetical HYSYS® components was developed. Stage efficiency correlations, relating various operating parameters to the column performance, were derived from parametric studies performed in Aspen Custom Modeler®. Preliminary simulations indicated that the efficiency correlations were only necessary for the absorber columns; the regenerator columns were adequately represented by the default equilibrium stage models. Hypothetical components were created for the hot potassium carbonate system and the standard Peng-Robinson property package model in HYSYS® was modified to include tabular physical property models to accommodate the hot potassium carbonate system. Relevant model parameters were determined from literature data. As for the Aspen Custom Modeler® process models, the HYSYS® CO₂ Removal Train process models were successfully validated against steady-state plant data. To demonstrate a potential application of the HYSYS® process models, dynamic simulations of the two most dissimilarly configured trains, CO₂ Removal Trains #1 and #7, were performed. Simple first-order plus dead time (FOPDT) process transfer function models, relating the key process variables, were derived to develop a diagonal control structure for each CO₂ Removal Train. The FOPDT model is the standard process engineering approximation to higher order systems, and it effectively described most of the process response curves for the two CO₂ Removal Trains. Although a few response curves were distinctly underdamped, the quality of the validating data for the CO₂ Removal Trains did not justify the use of more complex models than the FOPDT model. While diagonal control structures are a well established form of control for multivariable systems, their application to the hot potassium carbonate process has not been documented in literature. Using a number of controllability analysis methods, the two CO₂ Removal Trains were found to share the same optimal diagonal control structure, which suggested that the identified control scheme was independent of the CO₂ Removal Train configurations. The optimal diagonal control structure was tested in dynamic simulations using the MATLAB® numerical computing environment and was found to provide effective control. This finding confirmed the results of the controllability analyses and demonstrated how the HYSYS® process model could be used to facilitate the development of a control strategy for the Moomba CO₂ Removal Trains. In conclusion, this work addressed the development of a new non-equilibrium rate-based model for the hot potassium carbonate process and its application to the Moomba CO₂ Removal Trains. Further work is recommended to extend the model validity over a wider range of operating conditions and to expand the dynamic HYSYS® simulations to incorporate the diagonal control structures and/or more complex control schemes. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1350259 / Thesis (Ph.D.) - University of Adelaide, School of Chemical Engineering, 2009
14

Development and demonstration of a new non-equilibrium rate-based process model for the hot potassium carbonate process.

Ooi, Su Ming Pamela January 2009 (has links)
Chemical absorption and desorption processes are two fundamental operations in the process industry. Due to the rate-controlled nature of these processes, classical equilibrium stage models are usually inadequate for describing the behaviour of chemical absorption and desorption processes. A more effective modelling method is the non-equilibrium rate-based approach, which considers the effects of the various driving forces across the vapour-liquid interface. In this thesis, a new non-equilibrium rate-based model for chemical absorption and desorption is developed and applied to the hot potassium carbonate process CO₂ Removal Trains at the Santos Moomba Processing Facility. The rate-based process models incorporate rigorous thermodynamic and mass transfer relations for the system and detailed hydrodynamic calculations for the column internals. The enhancement factor approach was used to represent the effects of the chemical reactions. The non-equilibrium rate-based CO₂ Removal Train process models were implemented in the Aspen Custom Modeler® simulation environment, which enabled rigorous thermodynamic and physical property calculations via the Aspen Properties® software. Literature data were used to determine the parameters for the Aspen Properties® property models and to develop empirical correlations when the default Aspen Properties® models were inadequate. Preliminary simulations indicated the need for adjustments to the absorber column models, and a sensitivity analysis identified the effective interfacial area as a suitable model parameter for adjustment. Following the application of adjustment factors to the absorber column models, the CO₂ Removal Train process models were successfully validated against steady-state plant data. The success of the Aspen Custom Modeler® process models demonstrated the suitability of the non-equilibrium rate-based approach for modelling the hot potassium carbonate process. Unfortunately, the hot potassium carbonate process could not be modelled as such in HYSYS®, Santos’s preferred simulation environment, due to the absence of electrolyte components and property models and the limitations of the HYSYS® column operations in accommodating chemical reactions and non-equilibrium column behaviour. While importation of the Aspen Custom Modeler® process models into HYSYS® was possible, it was considered impractical due to the significant associated computation time. To overcome this problem, a novel approach involving the HYSYS® column stage efficiencies and hypothetical HYSYS® components was developed. Stage efficiency correlations, relating various operating parameters to the column performance, were derived from parametric studies performed in Aspen Custom Modeler®. Preliminary simulations indicated that the efficiency correlations were only necessary for the absorber columns; the regenerator columns were adequately represented by the default equilibrium stage models. Hypothetical components were created for the hot potassium carbonate system and the standard Peng-Robinson property package model in HYSYS® was modified to include tabular physical property models to accommodate the hot potassium carbonate system. Relevant model parameters were determined from literature data. As for the Aspen Custom Modeler® process models, the HYSYS® CO₂ Removal Train process models were successfully validated against steady-state plant data. To demonstrate a potential application of the HYSYS® process models, dynamic simulations of the two most dissimilarly configured trains, CO₂ Removal Trains #1 and #7, were performed. Simple first-order plus dead time (FOPDT) process transfer function models, relating the key process variables, were derived to develop a diagonal control structure for each CO₂ Removal Train. The FOPDT model is the standard process engineering approximation to higher order systems, and it effectively described most of the process response curves for the two CO₂ Removal Trains. Although a few response curves were distinctly underdamped, the quality of the validating data for the CO₂ Removal Trains did not justify the use of more complex models than the FOPDT model. While diagonal control structures are a well established form of control for multivariable systems, their application to the hot potassium carbonate process has not been documented in literature. Using a number of controllability analysis methods, the two CO₂ Removal Trains were found to share the same optimal diagonal control structure, which suggested that the identified control scheme was independent of the CO₂ Removal Train configurations. The optimal diagonal control structure was tested in dynamic simulations using the MATLAB® numerical computing environment and was found to provide effective control. This finding confirmed the results of the controllability analyses and demonstrated how the HYSYS® process model could be used to facilitate the development of a control strategy for the Moomba CO₂ Removal Trains. In conclusion, this work addressed the development of a new non-equilibrium rate-based model for the hot potassium carbonate process and its application to the Moomba CO₂ Removal Trains. Further work is recommended to extend the model validity over a wider range of operating conditions and to expand the dynamic HYSYS® simulations to incorporate the diagonal control structures and/or more complex control schemes. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1350259 / Thesis (Ph.D.) - University of Adelaide, School of Chemical Engineering, 2009
15

Estudo da cinética das reações de hidrodesnitrogenação.

FERNANDES, Thalita Cristine Ribeiro Lucas. 16 October 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-16T12:44:41Z No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5) / Made available in DSpace on 2018-10-16T12:44:41Z (GMT). No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5) Previous issue date: 2017-09-27 / CNPq / A hidrodesnitrogenação catalítica é um processo utilizado para remover impurezas de nitrogênio em produtos derivados de petróleo e ocorre mediante o tratamento da carga com hidrogênio a temperatura e pressão elevadas em um reator do tipo tricled-bed. Para otimizar as operações nestes reatores, é necessário que se tenha informações sobre a cinética das várias reações de hidrodesnitrogenação. Entretanto, as equações das taxas das reações não estão disponíveis na literatura. Assim, o objetivo deste trabalho consiste em obter as equações das taxas das reações e os parâmetros cinéticos para a rede reacional dos compostos nitrogenados utilizando o modelo rigoroso de hidrodesnitrogenação do Aspen Hysys como base numérica para as simulações. Experimentos numéricos foram realizados em um reator diferencial no software Aspen Hysys para obter dados de concentração de reagentes e produtos a diferentes alimentações. Diferentes métodos foram utilizados, um método de regressão linear multivariável para obtenção dos coeficientes de regressão, um método de metamodelagem interpoladora estocástica, o Kriging e a otimização do metamodelo Kriging utilizando o método dos mínimos quadrados. Para testar as metodologias propostas, todas as etapas foram aplicadas para um sistema de duas reações simples, uma reversível e outra irreversível, em um reator PFR. Os resultados referentes ao método de regressão linear mostraram que a metodologia pode ser utilizada para estimar parâmetros cinéticos desde que se conheça a equação da taxa correspondente. A comparação entre os dois métodos do tipo Kriging propostos (convencional e otimizado) foi feita a partir de técnicas de análise estatísticas, como o coeficiente de determinação R² e análise de variância (ANOVA). O kriging otimizado mostrou uma melhor aderência aos dados quando comparado com o kriging convencional. / Catalytic hydrodenitrogenation is one process used to remove nitrogen impurities from refinery streams, and it occurs by reacting a given charge with hydrogen at high temperature and pressure in a trickled-bed reactor. In order to optimize the operation of such reactors one needs information about the kinetics of the various hydrodenitrogenation reactions. However, reaction rate expressions are not available in the open literature. Therefore, this work aims at obtaining the reaction rate expressions and parameters for the reaction network of nitrogen compounds using the rigorous hydrodenitrogenation model in Aspen Hysys as the numerical basis for simulations. A differential reactor to simulate the process for different feed streams generated data to estimate of concentration of reagent and products at different feed loads. Three different methods were used, a multivariable linear regression model to obtain the regression coefficients, a stochastic interpolator metamodeling, Kriging and an optimized Kriging with least square method. In a first step, two simple reactions rates were used to test the methodologies in a reactor PFR in Hysys, a reversible and an irreversible. The results showed that linear regression might be use to estimate parameters satisfactory only if you know the reaction rate expression. By using statistical analysis as determination coefficient R² and analyze of variance, ANOVA, it was possible to compare both Krigings (conventional and optimized). Optimized Kriging showed a better adherence to the data when compared to conventional kriging.
16

Energy Savings in CO2 Capture System through Intercooling Mechanism

Rehan, M., Rahmanian, Nejat, Hyatt, Xaviar, Peletiri, Suoton P., Nizami, A.-S. 12 March 2021 (has links)
Yes / It has been globally recognized as necessary to reduce greenhouse gas (GHG) emissions for mitigating the adverse effects of global warming on earth. Carbon dioxide (CO2) capture and storage (CCS) technologies can play a critical role to achieve these reductions. Current CCS technologies use several different approaches including adsorption, membrane separation, physical and chemical absorption to separate CO2from flue gases. This study aims to evaluate the performance and energy savings of CO2capture system based on chemical absorption by installing an intercooler in the system. Monoethanolamine (MEA) was used as the absorption solvent and Aspen HYSYS (ver. 9) was used to simulate the CO2capturing model. The positioning of the intercooler was studied in 10 different cases and compared with the base case 0 without intercooling. It was found that the installation of the intercooler improved the overall efficiency of CO2recovery in the designed system for all 1-10 cases. Intercooler case 9 was found to be the best case in providing the highest recovery of CO2(92.68%), together with MEA solvent savings of 2.51%. Furthermore, energy savings of 16 GJ/h was estimated from the absorber column alone, that would increase many folds for the entire CO2capture plant. The intercooling system, thus showed improved CO2recovery performance and potential of significant savings in MEA solvent loading and energy requirements, essential for the development of economical and optimized CO2capturing technology.
17

Process simulation and assessment of crude oil stabilization unit

Rahmanian, Nejat, Aqar, D.Y., Bin Dainure, M.F., Mujtaba, Iqbal 05 July 2018 (has links)
Yes / Crude oil is an unrefined petroleum composed of wide range of hydrocarbon up to n‐C40+. However, there are also a percentage of light hydrocarbon components present in the mixture. Therefore, to avoid their flashing for safe storage and transportation, the live crude needs to be stabilized beforehand. This paper aims to find the suitable operating conditions to stabilize an incoming live crude feed to maximum true vapor pressure (TVPs) of 12 psia (82.7 kPa) at Terengganu Crude Oil Terminal, Malaysia. The simulation of the process has been conducted by using Aspen HYSYS. The obtained results illustrate that the simulation data are in good agreement with the plant data and in particular for the heavier hydrocarbons. For the lighter components, the simulation results overpredict the plant data, whereas for the heavier components, this trend is reversed. It was found that at the outlet temperature (85–90°C) of hot oil to crude heat exchanger (HX‐220X), the high‐pressure separator (V‐220 A/B) and the low‐pressure separator (V‐230 A/B) had operating pressures of (400–592 kPa) and (165–186 kPa), respectively, and the live crude was successfully stabilized to a TVP of less than 12 psia. The impact of main variables, that is, inlet feed properties, three‐phase separators operating pressure, and preheater train's performance on the product TVP, are also studied. Based on the scenarios analyzed, it can be concluded that the actual water volume (kbbl/day) has greater impact on the heat exchanger's duty; thus, incoming free water to Terengganu Crude Oil Terminal should be less than 19.5 kbbl/day (9.1 vol%) at the normal incoming crude oil flow rate of 195 (kbbl/day).
18

Dynamic Liquefied Natural Gas (LNG) Processing with Energy Storage Applications

Fazlollahi, Farhad 01 June 2016 (has links)
The cryogenic carbon capture™ (CCC) process provides energy- and cost-efficient carbon capture and can be configured to provide an energy storage system using an open-loop natural gas (NG) refrigeration system, which is called energy storing cryogenic carbon capture (CCC-ES™). This investigation focuses on the transient operation and especially on the dynamic response of this energy storage system and explores its efficiency, effectiveness, design, and operation. This investigation included four tasks.The first task explores the steady-state design of four different natural gas liquefaction processes simulated by Aspen HYSYS. These processes differ from traditional LNG process in that the CCC process vaporizes the LNG and the cold vapors return through the LNG heat exchangers, exchanging sensible heat with the incoming flows. The comparisons include costs and energy performance with individually optimized processes, each operating at three operating conditions: energy storage, energy recovery, and balanced operation. The second task examines steady-state and transient models and optimization of natural gas liquefaction using Aspen HYSYS. Steady-state exergy and heat exchanger efficiency analyses characterize the performance of several potential systems. Transient analyses of the optimal steady-state model produced most of the results discussed here. The third task explores transient Aspen HYSYS modeling and optimization of two natural gas liquefaction processes and identifies the rate-limiting process components during load variations. Novel flowrate variations included in this investigation drive transient responses of all units, especially compressors and heat exchangers. Model-predictive controls (MPC) effectively manages such heat exchangers and compares favorably with results using traditional controls. The last task shows how an unprocessed natural gas (NG) pretreatment system can remove more than 90% of the CO2 from NG with CCC technology using Aspen Plus simulations and experimental data. This task shows how CCC-based technology can treat NG streams to prepare them for LNG use. Data from an experimental bench-scale apparatus verify simulation results. Simulated results on carbon (CO2) capture qualitatively and quantitatively agree with experimental results as a function of feedstock properties.
19

Computer Aided Simulation and Process Design of a Hydrogenation Plant Using Aspen HYSYS 2006

Ordouei, Mohammad Hossein January 2009 (has links)
Nowadays, computers are extensively used in engineering modeling and simulation fields in many different ways, one of which is in chemical engineering. Simulation and modeling of a chemical process plant and the sizing of the equipment with the assistance of computers, is of special interests to process engineers and investors. This is due to the ability of high speed computers, which make millions of mathematical calculations in less than a second associated with the new powerful software that make the engineering calculations more reliable and precise by making very fast iterations in thermodynamics, heat and mass transfer calculations. This combination of new technological hardware and developed software enables process engineers to deal with simulation, design, optimization, control, analysis etc. of complex plants, e.g. refinery and petrochemical plants, reliably and satisfactorily. The main chemical process simulators used for static and dynamic simulations are ASPEN PLUS, ASPEN HYSYS, PRO II, and CHEMCAD. The basic design concepts of all simulators are the same and one can fairly use all simulators if one is expert in any of them. Hydrogenation process is an example of the complex plants, to which a special attention is made by process designers and manufacturers. This process is used for upgrading of hydrocarbon feeds containing sulfur, nitrogen and/or other unsaturated hydrocarbon compounds. In oil and gas refineries, the product of steam cracking cuts, which is valuable, may be contaminated by these unwanted components and thus there is a need to remove those pollutants in downstream of the process. Hydrogenation is also used to increase the octane number of gasoline and gas oil. Sulfur, nitrogen and oxygen compounds and other unsaturated hydrocarbons are undesired components causing environmental issues, production of by-products, poisoning the catalysts and corrosion of the equipment. The unsaturated C=C double bonds in dioleffinic and alkenyl aromatics compounds, on the other hand, cause unwanted polymerization reactions due to having the functionality equal to or greater than 2. Hydrogenation process of the undesired components will remove those impurities and/or increase the octane number of aforementioned hydrocarbons. This process is sometimes referred to as “hydrotreating”; however, “upgrader” is a general word and is, of course, of more interest. In this thesis, a hydrogenation process plant was designed on the basis of the chemistry of hydrocarbons, hydrogenation reaction mechanism, detailed study of thermodynamics and kinetics and then a steady-state simulation and design of the process is carried out by ASPEN HYSYS 2006 followed by design evaluation and some modifications and conclusions. Hydrogenation reaction has a complicated mechanism. It has been subjected to hot and controversial debates over decades. Many kinetic data are available, which contradict one another. Among them, some of the experimental researches utilize good assumptions in order to simplify the mechanism so that a “Kinetic Reaction” modeling can be employed. This thesis takes the benefit of such research works and applies some conditions to approve the validity of those assumptions. On the basis of this detailed study of reaction modeling and kinetic data, a hydrogenation plant was designed to produce and purify over 98 million kilograms of different products; e.g. Benzene, Toluene, Iso-octane etc. with fairly high purity.
20

Computer Aided Simulation and Process Design of a Hydrogenation Plant Using Aspen HYSYS 2006

Ordouei, Mohammad Hossein January 2009 (has links)
Nowadays, computers are extensively used in engineering modeling and simulation fields in many different ways, one of which is in chemical engineering. Simulation and modeling of a chemical process plant and the sizing of the equipment with the assistance of computers, is of special interests to process engineers and investors. This is due to the ability of high speed computers, which make millions of mathematical calculations in less than a second associated with the new powerful software that make the engineering calculations more reliable and precise by making very fast iterations in thermodynamics, heat and mass transfer calculations. This combination of new technological hardware and developed software enables process engineers to deal with simulation, design, optimization, control, analysis etc. of complex plants, e.g. refinery and petrochemical plants, reliably and satisfactorily. The main chemical process simulators used for static and dynamic simulations are ASPEN PLUS, ASPEN HYSYS, PRO II, and CHEMCAD. The basic design concepts of all simulators are the same and one can fairly use all simulators if one is expert in any of them. Hydrogenation process is an example of the complex plants, to which a special attention is made by process designers and manufacturers. This process is used for upgrading of hydrocarbon feeds containing sulfur, nitrogen and/or other unsaturated hydrocarbon compounds. In oil and gas refineries, the product of steam cracking cuts, which is valuable, may be contaminated by these unwanted components and thus there is a need to remove those pollutants in downstream of the process. Hydrogenation is also used to increase the octane number of gasoline and gas oil. Sulfur, nitrogen and oxygen compounds and other unsaturated hydrocarbons are undesired components causing environmental issues, production of by-products, poisoning the catalysts and corrosion of the equipment. The unsaturated C=C double bonds in dioleffinic and alkenyl aromatics compounds, on the other hand, cause unwanted polymerization reactions due to having the functionality equal to or greater than 2. Hydrogenation process of the undesired components will remove those impurities and/or increase the octane number of aforementioned hydrocarbons. This process is sometimes referred to as “hydrotreating”; however, “upgrader” is a general word and is, of course, of more interest. In this thesis, a hydrogenation process plant was designed on the basis of the chemistry of hydrocarbons, hydrogenation reaction mechanism, detailed study of thermodynamics and kinetics and then a steady-state simulation and design of the process is carried out by ASPEN HYSYS 2006 followed by design evaluation and some modifications and conclusions. Hydrogenation reaction has a complicated mechanism. It has been subjected to hot and controversial debates over decades. Many kinetic data are available, which contradict one another. Among them, some of the experimental researches utilize good assumptions in order to simplify the mechanism so that a “Kinetic Reaction” modeling can be employed. This thesis takes the benefit of such research works and applies some conditions to approve the validity of those assumptions. On the basis of this detailed study of reaction modeling and kinetic data, a hydrogenation plant was designed to produce and purify over 98 million kilograms of different products; e.g. Benzene, Toluene, Iso-octane etc. with fairly high purity.

Page generated in 0.0255 seconds