• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 18
  • 15
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 80
  • 80
  • 26
  • 21
  • 21
  • 18
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Unidade eletrônica microprocessada para tratamento de sinais de transformadores de instrumentação ópticos e convencionais para aplicações metrológicas in situ. / Microprocesse electronic unit for signal treatment from optical and conventional instrument transformersmfor on-site metrological applications.

Shigueru Nagao Junior 27 January 2017 (has links)
As elevadas perdas existentes no setor elétrico tem causado preocupação nas empresas de distribuição, aliadas ainda a necessidade crescente de um desenvolvimento econômico sustentável. Neste cenário a calibração periódica dos instrumentos destinados a medição (entre eles os transformadores de instrumentos) tornam-se essenciais e tais procedimentos encontram-se previstos no novo modelo de operação do setor elétrico. Porém, as dificuldades logísticas e operacionais de transporte a laboratórios metrológicos credenciados dificultam a execução de tais serviços. As técnicas e métodos desenvolvidos nesse trabalho visam a implementação de uma unidade eletrônica capaz de aquisitar e processar dados provenientes de transformadores de instrumentos, de natureza indutiva (denominado de convencional) e ópticos, bem como seus subsistemas de apoio, como ferramentas de medição e calibração portátil, móvel, para execução dos serviços metrológicos in situ nos ambientes das subestações e cabines primárias. Estes serviços, apesar de estarem em estágio incipiente, são de extremo interesse para empresas de energia elétrica. Este projeto está baseado no estado da arte de componentes da eletrônica analógica e digital, onde destacam-se conversores analógico/digital (A/D), microprocessadores, osciladores, FPGA e técnicas computacionais para processamento digital de sinais. São apresentadas as formas de implementação tanto em hardware como em software para esta unidade eletrônica de forma a atender aos requisitos funcionais especificados e às normas do INMETRO e normas internacionais equivalentes para aplicações metrológicas. A validação é baseada em testes comparativos dos fasores na frequência fundamental dos sinais obtidos, analisando os valores de amplitude (para cálculo de erro de relação) e de fase ( para cálculo de erro de fase) entre transformadores ópticos e convencionais, sendo que estes últimos podem ser de referência ou não. / The high losses in the electricity sector have caused concern in distribution companies, together with the growing need for sustainable economic development. In this scenario the periodic calibration of instruments intended for measurement (including instrument transformers) become essential and such procedures are provided for in the new model of operation of the electric sector. However, the logistical and operational difficulties of transportation to accredited metrological laboratories make it difficult to perform such services. The techniques and methods developed in this work are aimed at the implementation of an electronic unit capable of acquiring and processing data from instrument transformers of an inductive (conventional) and optical nature, as well as its supporting subsystems, such as portable and mobile measuring and calibration tools for the execution of on-site metrological services in the substations and primary cabins. These services, although in an incipient stage, are of extreme interest to electric energy companies. This project is based on the state-of-the-art components of analog and digital electronics, including analog/digital (A/D) converters, microprocessors, oscillators, FPGA and computational techniques for digital signal processing. The forms of implementation in both hardware and software for this electronic unit are presented in order to meet the functional requirements specified and the standards of the Instituto Nacional de Metrologia (INMETRO) and equivalent international standards for metrological applications. The validation is based on comparative tests of the phasors at the fundamental frequency of the obtained signals, analyzing the amplitude (for ratio error calculation) and phase (for phase error calculation) between optical and conventional transformers, the last one can be reference or not.
62

Development of a laboratory facility and experiments to support learning IEC 61850 based substation automation

Wickremasuriya, Boosabaduge Achintha Hiruwan 08 January 2016 (has links)
IEC 61850 is rapidly becoming the internationally recognized standard for substation automation systems making it an indispensable element in power system protection and automation education. In order to facilitate teaching this very practical subject, a laboratory setup was developed to demonstrate IEC 61850 station bus inter Intelligent Electronic Device (IED) communication. In this setup, an electrical substation was implemented in a real time digital simulator (RTDS) and protection schemes were implemented in IEC 61850 station bus compliant IEDs from different vendors. Trip signals and breaker statuses were exchanged between RTDS and IEDs using GOOSE (Generic Object Oriented Substation Event) messages. Several protection applications including a novel backup bus protection scheme were developed based on the setup to demonstrate the use of GOOSE messages in time critical applications. The developed test setup along with the designed laboratory exercises will undoubtedly enhance teaching, training and research in this important field. / February 2016
63

State-of-the-art development platform for hydropower turbine governors

Näsström, Joakim January 2017 (has links)
Hydropower is a flexible energy source that is essential for balancing the electrical power system on all timescales, from seconds to years. In addition to intra-hour regulation, it provides frequency containment reserves (FCR-N,FCR-D) and frequency restoration reserves (mFRR, aFRR) to the grid. The turbine governor is a device responsible for controlling the power output and delivering frequency control to the system. The aim of this Master’s Thesis project is to develop a new hydropower turbine governor in MATLAB/Simulink, which contains all critical functionality from the existing governor and with the same performance. The new governor should as far as possible comply to the well-established communication standard IEC 61850. A working model of the turbine governor has been built in Simulink that supports normal operation with frequency control, start and stop, load rejection, operation mode as synchronous condenser and more. Validations of the model against data from Akkats powerplant shows that the model behaves as a real governor during normal operation. Validations of the start sequence showed deviations during sequence 3 and 4 which can be explained by usage of different PID parameters. Using IEC 61850 as a nomenclature and as a way of structuring functions in the governor has also been possible. Implementing the whole standard for communication, requires that the control system also is renewed according to IEC 61850. Certain functions, as sequencing has thus not been done according to the standard. MATLAB and Simulink provide tools for building, simulating and testing implementations of the turbine governor. The contributions this platform can provide are; ease of implementation, optimization and testing of control strategies. Simulink also provides a graphical interface, which reduce system complexity. An optimal implementation requires a hardware with support for Simulink to get a transparent platform. Ultimately, these benefits could result in better frequency quality at a lower cost, which is essential for successful and cost-effective integration of other renewable energy sources such as wind- and solar power.
64

Identifikace dostupnosti zařízení v technologických sítích / Identification of Device Availability in Technological Networks

Vodehnal, Stanislav January 2018 (has links)
This diploma thesis deals with the monitoring of network elements of technological networks and distribution systems. There are described reasons why and what kind of values we want to monitor. Three monitoring systems are then selected, described their properties and functions. Based on their merits, one system for deploying the test environment is selected. The practical part is the configuration of the selected system and its subsequent deployment to the network.
65

Testování zranitelností v průmyslových sítích / Vulnerabilities assessment for industrial protocols

Zahradník, Jiří January 2020 (has links)
Thesis deals with testing of selected vulnerabilities from the IEC 61850 standard and following design of mitigation measures for selected vulnerabilities. Author simulated vulnerabilities of the GOOSE protocol, NTP attack and attack ona MMS client. Those attacks were GOOSE stNum, GOOSE semantic, GOOSE test bit,GOOSE replay, GOOSE flood, NTP spoofing and MMS password capture. Attacks on protocols GOOSE and MMS were successful, attack on NTP was only partially successful since the device confirmed receiving spoofed time, however it did not change it’s inner clock. Author then designed possible mitigation measures. Tool for automatic testing of selected vulnerabilities, parser for the GOOSE protocol and lightweight multiplatform parser for configuration files were created as well.The outcome of this thesis allows the implementation of lager scale tool for penetration testing of industrial networks as well as it allows implementation of discussed mitigation measures.
66

Otestovaní komunikace po IEC61850 s využitím GOOSE mezi ABB a Siemens ochranou / Testing Communication via IEC 61850 and GOOSE between ABB and Siemens Protections

Vavreczky, Gábor January 2012 (has links)
The main objective of this thesis is to examine the possibility of cooperation of IEDs from ABB and Siemens in accordance with IEC61850. The aim is to create and test a workflow, after which protection relays from ABB and Siemens will communicate with each other via GOOSE messages. This paper provides a description of the international standard IEC61850, as a theoretical basis. Describes in detail the configuration of protection relays SIPROTEC 7SA610 according to IEC61850. Work provides a description of the configuration tools PCM600 and IET600 which are used for configuration of protection relays RELION® REF615 by ABB. In the final part of the work experiences that are written in collaboration used protection.
67

Automatizace rozvodny VN s využitím řídicího systému COM600 a standardu IEC61850 / Medium voltage substation automation using control system COM600 and standard IEC61850

Havelka, Tomáš January 2016 (has links)
This work deals with problematic of standard IEC61850, mainly with chapter IEC 61850-9-2 LE which is commonly known as Process bus communication. There are described advanced tools of the control system COM600 with detail description of their configuration in this work. It also deals with configuration of IEC 61850-9-2 LE with Relion family protection relays and its implementation to the control system COM600. The main aim of this work is focused on configuration of IEC 61850-9-2 standard with protection relays, configuration and detail description of COM600 advanced tools, description of Logic processor, further custom design and appliaction configuration global reset of Logic procesor in control system COM600.
68

Monitoring, protection, and voltage control of parallel power transformers based on IEC 61850-9-2 process bus

Pieters, Willem Diederick January 2019 (has links)
Thesis (MEng (Electrical Engineering)--Cape Peninsula University of Technology, 2019 / The purpose of an electrical power system is to supply electrical energy to the customers. Power transformers are required to transform the system voltage from generation to transmission and distribution levels. Protection and control systems must ensure that power system high voltage equipment such as transformers operate and deliver save, reliable and secure electricity supply. The aim of the project research work is to develop and implement a strategy, methods and algorithms for monitoring, protection and voltage control of parallel power transformers based on IEC 61850-9-2 process bus standard. NamPower is a power utility in Namibia. The IEC 61850 protocol for electrical substation automation system is used for the protection and control of 5 power transformers operated in parallel in an existing substation system. The IEC 61850-9-2 process bus standard is however not used in regards of Sampled Values (SV). Protection and control devices are connected to a substation communication network, routers and switches using fibre optic linked Ethernet. Inductive Current Transformers (CTs) and Voltage Transformers (VTs) secondary circuits are hardwired to Intelligent Electronic Devices (IEDs) and fibre optic links are not used for this purpose at process level communication. The research focuses on the implementation of the IEC 61850 standard with Merging Units (MUs) and sampled values to improve the existing implemented protection and control system at NamPower. This includes substation communication networks and MUs used for transformer protection, voltage regulator control and cooling fan control. At the present the CTs located at the transformer bushings and switchgear and the VTs located at the switchgear are hardwired to the inputs on protection and control IEDs. The research focuses on issues with the copper wires for voltage and currents signals and how these issues can be eliminated by using the MUs and the SV protocol. The MUs which are considered in this Thesis is to improve the voltage regulator control and the control of the cooling fan motors. The voltage regulator control IED is situated at the tap change motor drive of the On-Load Tap Changer (OLTC). The IED of each transformer is required to regulate the voltage level of the secondary side bus bar it is connected to. All the regulating IEDs are required to communicate with each other and collectively to control the bus bar voltage depending on the switching configuration of the parallel transformers. The control circuit for controlling the cooling fan motors is hardwired. Temperature analogue signal input into a programmable automation controller IED can be used for controlling the transformer cooling fans. A strategy, methods and algorithms for transformer protection, voltage regulator control and cooling fan motor control of parallel power transformers need to be developed and implemented based on IEC 61850-9-2 process bus. Power utilities and distributors can benefit from interpretation of the IEC 61850-9-2 standard and implementing MUs and SV in substations. MUs can be included in the power transformer protection, automation and control systems. A cost reduction in high voltage equipment, substation installation and commissioning costs and better performance of protection and control system are anticipated.
69

ICT System Architecture for Smart Energy Container

Wu, Yiming January 2011 (has links)
Hybrid Energy Resource System (HERS) is studied and applied aroundworld in recent years. Control and monitor of them are quite important in realapplication. HERS also has the equirement to integral with power grid such asdistribution grid networks. Therefore, to design and implement the informationcommunication system following IEC 61850, which is most promising standard fordesign of substation communication and automation system, is necessary. This paperpresents the design of Information Communication Technology (ICT) architectureand Unified Modeling Language (UML) models and final implementation through LabVIEW programming for Smart Energy Container. Applying design following IEC61850 series standards allow the HERS can communicate and interoperate with other IEC61850 devices and SCADA systems. The implementation is applied to SmartEnergy Container which contains wind power, solar power, battery energy storagesystem, and hydrogen energy storage system. Verification and testing results shows thedesign is qualified to control and monitor Smart Energy Container. / Smart Energy Container
70

Time-Sensitive Networking in Digital Substations

Johansson, Andreas, Wågbrant, Samuel January 2024 (has links)
With the advancements in the Industrial Internet of Things (IIoT), new networking requirements and demands are introduced to Substation Automation Systems (SAS) within electrical power grids. The possibility of merging Information Technology (IT) and Operational Technology (OT) traffic on the same network to achieve higher productivity, however, presents new challenges in providing real-time guarantees to OT traffic. Time-Sensitive Networking (TSN) can be a promising solution that allows IT and OT traffic to coexist seamlessly while still providing real-time guarantees for critical applications. Substations act as critical nodes within power grids, and their digitalisation is a crucial element in the energy transition. A digital substation handles International Electrotechnical Commission (IEC) 61850 protocol traffic such as Generic Object Oriented Substation Event (GOOSE), Sampled Values (SV), and Manufacturing Message Specification (MMS), which all have strict timing requirements. The integration of TSN into these substations could improve the handling of this traffic and, consequently, the controllability of power grids. This thesis investigates the use of TSN in an IEC 61850 process bus, typically implemented in an SAS. A series of simulated test scenarios were developed to evaluate the impact of TSN compared to traditional networking methods. These included configurations using Ethernet, Ethernet with priority queuing, and TSN with Time-Aware Shaper (TAS) and Credit-Based Shaper (CBS). The results indicate that TSN can meet critical timing requirements, reduce jitter, and manage sporadic traffic effectively under high traffic loads. While the TAS scheduler may increase End-to-End delay for periodic traffic, CBS can reduce it for event-based traffic. Furthermore, robust timing guarantees are ensured for the TSN scenarios by providing a feasible schedule for Scheduled Traffic (ST) and a worst-case response time analysis for Audio-Video Bridging (AVB) traffic. This research highlights TSN’s potential to improve grid controllability and reliability through enhanced network performance, illustrating its role in the future of resilient grid technologies.

Page generated in 0.0191 seconds