• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ionic, cellular and molecular mechanisms underlying the QT prolongation and arrhythmias in diabetic cardiocomplications

Zhang, Yiqiang January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
2

Teratogenicity as a consequence of drug-induced embryonic cardiac arrhythmia : Common mechanism for almokalant, sotalol, cisapride, and phenytoin via inhibition of IKr

Sköld, Anna-Carin January 2000 (has links)
<p>During the last years, drugs that prolong the repolarisation phase of the myocardial action potential, due to inhibition of the rapid component of the delayed-rectifying potassium channel (I<sub>Kr</sub>) have been in focus. In addition to arrhythmogenic potential, selective Ikr-blockers have also been shown to be embryotoxic and teratogenic in animal studies. The aim of this thesis was to investigate a theory that these developmental toxic results from pharmacologically induced episodes of embryonic cardiac arrhythmias leading to hypoxia related damage in the embryo. Almokalant (ALM) was used as a model compound for selective Ikr-blockers. ALM induced embryonic cardiac arrhythmia, and in similarity with results obtained by maternal hypoxia, ALM induced embryonic death and growth retardation in both rats, and mice. </p><p>The theory of a hypoxia-related mechanism was strengthened by the results that ALM induce phase specific external and visceral defects (e.g. cleft lip/palate, distal digital, cardiovascular, and urogenital defects), and that the skeletal defects (not shown before) showed a clear trend; the later the treatment the more caudal was the site of the defect, which is in accordance with results from maternal hypoxia induced by e.g. lowering of the O<sub>2</sub> content in the air. The spin trapping agent PBN decreased almokalant induced malformations, suggesting that the defects mainly are caused by reoxygenation damage after episodes of severe embryonic dysrhythmia, rather than "pure hypoxia".</p><p>Sotalol was tested in a third species, the rabbit who expresses functional I<sub>Kr</sub> channels both in the embryo and in the adult, where it induced developmental toxicity, and indicating that the embryo is more sensitive than the adult towards arrhythmia caused by I<sub>Kr</sub>-blockers. </p>
3

Common mechanism for teratogenicity of antiepileptic drugs : Drug-induced embryonic arrhythmia and hypoxia-reoxygenation damage

Azarbayjani, Faranak January 2001 (has links)
<p>The Antiepilptic drugs (AEDs) phenytoin (PHT), carbamazepine (CBZ), phenobarbital (PB), tri- and dimethadione (TMD and DMD) are known teratogens having a common malformation pattern in human and animal studies. This thesis was designed chiefly to test a hypothesis correlating the teratogenicity of these AEDs to episodes of pharmacologically induced embryonic arrhythmia and hypoxia-reoxygenation damage.</p><p>Effects on the embryonic heart were studied both after maternal administration in mice and in</p><p>mouse embryos cultured in vitro. Only AEDs, correlated with the same type of malformation as could be induced by episodes of interrupted oxygen supply to the embryo (e.g. cleft palate) caused concentration dependent bradycardia and arrhythmia. PHT and DMD had the highest potential and affected embryonic heart at clinically relevant concentration, followed by CBZ, TMD and PB. Valproate and vigabatrin not associated with hypoxia-related malformations caused neither arrhythmia nor severe bradycardia.</p><p>The results showed that the embryonic heart is extremely susceptible to PHT and DMD only</p><p>during a restricted period of development, between gestational days 9-13 (weeks 5-9 of human pregnancy).An observed genetic susceptibility to react with arrhythmia at low concentrations when exposed to PHT or to external stress, could explain why A/J strain of mice is more susceptible to develop cleft palate compared to other strains. High activities of reactive oxygen species (ROS) capturing antioxidant enzymes observed in untreated A/J embryos supported this assumption. The potential to cause embryonic arrythmia by an AED was related to the potential to inhibit the rapid component of the delayed rectifier potassium channel (I <sub>kr</sub> ).A marked I <sub>kr</sub> blocking activity (70%)of DMD in voltage clamping studies was observed. The I <sub>kr</sub> inhibition occurred at similar concentrations, which causes severe arrhythmia.</p><p>The idea of a relation between teratogenicity and arrhythmia, resulting in ischemia followed by reperfusion and generation of ROS was supported by mechanistic studies. Pre-treatment with the spin-trapping agent PBN, which has the capacity to capture ROS, markedly reduced the incidence of PHT and DMD-induced cleft palate. In utero exposure to teratogenic doses of DMD and PHT resulted in hemorrhages in the embryonic palatal region. The same type of haemorrhage in the palatal region precedes orofacial clefts induced by episodic hypoxia.</p>
4

Teratogenicity as a consequence of drug-induced embryonic cardiac arrhythmia : Common mechanism for almokalant, sotalol, cisapride, and phenytoin via inhibition of IKr

Sköld, Anna-Carin January 2000 (has links)
During the last years, drugs that prolong the repolarisation phase of the myocardial action potential, due to inhibition of the rapid component of the delayed-rectifying potassium channel (IKr) have been in focus. In addition to arrhythmogenic potential, selective Ikr-blockers have also been shown to be embryotoxic and teratogenic in animal studies. The aim of this thesis was to investigate a theory that these developmental toxic results from pharmacologically induced episodes of embryonic cardiac arrhythmias leading to hypoxia related damage in the embryo. Almokalant (ALM) was used as a model compound for selective Ikr-blockers. ALM induced embryonic cardiac arrhythmia, and in similarity with results obtained by maternal hypoxia, ALM induced embryonic death and growth retardation in both rats, and mice. The theory of a hypoxia-related mechanism was strengthened by the results that ALM induce phase specific external and visceral defects (e.g. cleft lip/palate, distal digital, cardiovascular, and urogenital defects), and that the skeletal defects (not shown before) showed a clear trend; the later the treatment the more caudal was the site of the defect, which is in accordance with results from maternal hypoxia induced by e.g. lowering of the O2 content in the air. The spin trapping agent PBN decreased almokalant induced malformations, suggesting that the defects mainly are caused by reoxygenation damage after episodes of severe embryonic dysrhythmia, rather than "pure hypoxia". Sotalol was tested in a third species, the rabbit who expresses functional IKr channels both in the embryo and in the adult, where it induced developmental toxicity, and indicating that the embryo is more sensitive than the adult towards arrhythmia caused by IKr-blockers.
5

Common mechanism for teratogenicity of antiepileptic drugs : Drug-induced embryonic arrhythmia and hypoxia-reoxygenation damage

Azarbayjani, Faranak January 2001 (has links)
The Antiepilptic drugs (AEDs) phenytoin (PHT), carbamazepine (CBZ), phenobarbital (PB), tri- and dimethadione (TMD and DMD) are known teratogens having a common malformation pattern in human and animal studies. This thesis was designed chiefly to test a hypothesis correlating the teratogenicity of these AEDs to episodes of pharmacologically induced embryonic arrhythmia and hypoxia-reoxygenation damage. Effects on the embryonic heart were studied both after maternal administration in mice and in mouse embryos cultured in vitro. Only AEDs, correlated with the same type of malformation as could be induced by episodes of interrupted oxygen supply to the embryo (e.g. cleft palate) caused concentration dependent bradycardia and arrhythmia. PHT and DMD had the highest potential and affected embryonic heart at clinically relevant concentration, followed by CBZ, TMD and PB. Valproate and vigabatrin not associated with hypoxia-related malformations caused neither arrhythmia nor severe bradycardia. The results showed that the embryonic heart is extremely susceptible to PHT and DMD only during a restricted period of development, between gestational days 9-13 (weeks 5-9 of human pregnancy).An observed genetic susceptibility to react with arrhythmia at low concentrations when exposed to PHT or to external stress, could explain why A/J strain of mice is more susceptible to develop cleft palate compared to other strains. High activities of reactive oxygen species (ROS) capturing antioxidant enzymes observed in untreated A/J embryos supported this assumption. The potential to cause embryonic arrythmia by an AED was related to the potential to inhibit the rapid component of the delayed rectifier potassium channel (I kr ).A marked I kr blocking activity (70%)of DMD in voltage clamping studies was observed. The I kr inhibition occurred at similar concentrations, which causes severe arrhythmia. The idea of a relation between teratogenicity and arrhythmia, resulting in ischemia followed by reperfusion and generation of ROS was supported by mechanistic studies. Pre-treatment with the spin-trapping agent PBN, which has the capacity to capture ROS, markedly reduced the incidence of PHT and DMD-induced cleft palate. In utero exposure to teratogenic doses of DMD and PHT resulted in hemorrhages in the embryonic palatal region. The same type of haemorrhage in the palatal region precedes orofacial clefts induced by episodic hypoxia.
6

Pathomechanismen von HERG-Ionenkanal-Mutationen als Ursache von menschlichen Repolarisationsstoerungen

Bertrand, Jessica 11 January 2008 (has links)
Inherited long-QT syndrome is caused by mutations in HERG gene that are associated with distinct mechanisms of ion channel dysfunction (haploinsufficiency or IKr current suppression). Recently, mutations with a gain of HERG channel dysfunction were reported to cause ventricular fibrillation or short-QT syndrome. In the present work, we performed clinical characterization of arrhythmia patients, genotyping and biochemical analysis of HERG mutants in order to elucidate potential disease mechanisms. Using site-directed mutagenesis, 7 identified mutations were inserted into the WT-HERG cDNA. Western blot was used to analyze mutant HERG glycosylation patterns, immunostaining and confocal laser microscopy was performed to localize mutant proteins in different cell compartments. Heterologous expression in Xenopus oocytes was used to analyze IKr currents with the voltage clamp method. The cellular turnover of mutant HERG channels was assessed with pulse-chase experiments. Mutations in the cytoplasmic domains (PAS and cNBD) and in the voltage sensor are trafficking deficient and were identified in LQT2 patients. Three mutations in the N- and C-terminal linker regions undergo regular trafficking to the plasma membrane and were identified compound heterozygous with one of the other mutations in LQT2 patients or separate in patients with IVF. HERG-mutations are associated with various phenotypes like LQT2 and IVF. It seems that there is a direct correlation between the functionality of the protein region with the clinical and molecular biological phenotype. Mutations in functional regions like the PAS- and cNBD-domain lead to a trafficking defect of the mutant proteins and for that reason to a reduction of Ikr. Mutations in less functional regions like the N and C-terminal linker regions undergo normal trafficking and lead to IVF.
7

Mechanisms of microRNA-mediated regulation of the rapid delayed rectifier potassium current, IKr, during sustained beta-adrenergic receptor stimulation

Enoch Amarh (17598138) 12 December 2023 (has links)
<p dir="ltr"><b>Background</b></p><p dir="ltr">Heart failure (HF) is a chronic clinical syndrome characterized by symptoms including breathlessness, fatigue, swelling of the ankles, and signs such as edema pulmonary crackles etc. During HF, pathogenic mechanisms including hemodynamic overload, ventricular remodeling, aberrant calcium handling, excessive neurohormonal stimulation contribute to the worsening and progression of the condition. Ventricular arrhythmias are the common cause of sudden cardiac death (SCD) in HF patients.</p><p dir="ltr">Hyperactivation of the sympathetic nervous system (SNS), a characteristic of HF, causes an increase in circulating catecholamines which becomes detrimental to-adrenergic receptors (-AR) leading to signaling dysfunction, and decrease in contractility and the ionotropic reserve. Expression of calcium/calmodulin-dependent protein kinase II (CaMKII), a downstream effector of-AR and a key regulator of calcium homeostasis, has been shown to be enhanced in HF. CaMKII-mediated mechanisms have been demonstrated to contribute to cardiac remodeling, arrhythmias by pathological regulation of ion channels, and contractile dysfunction.</p><p dir="ltr">The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the voltage-gated potassium channel that conduct the rapid component of the delayed rectifier potassium current, <i>I</i><sub>Kr</sub>. The gating kinetics of <i>I</i><sub>Kr </sub>makes it a crucial determinant of the duration of the plateau phase of atrial and ventricular action potential (AP). Reduced <i>I</i><sub>Kr</sub> density due to loss-of-function mutations or pharmacological blockage of hERG channels precipitate arrhythmias. Downregulation of <i>I</i><sub>Kr</sub> density and protein have been reported in HF. Recent studies suggest that microRNAs (miRNAs) are involved in pathological downregulation of hERG.</p><p dir="ltr">miRNA are small non-coding RNAs of approximately 22 nucleotides in length that function as gene expression regulatory elements by repression translation. Aberrant miRNA expression has associated with cancer, cardiovascular, autoimmune, and inflammatory disorders.</p><p dir="ltr"><b>Objective</b></p><p dir="ltr">The overarching objective of this study is to investigate the mechanisms of CaMKII-mediated regulation of hERG function, including assessment of an interplay with miR-362-3p during sustained β-AR stimulation. In Specific Aim 1, the effect of CaMKII activation through sustained β-AR stimulation on hERG function and miR-362-3p expression will be assessed. The mechanism of miR-362-3p upregulation will be evaluated in Specific Aim 2, and in Specific Aim 3, the interactome of miR-362-3p and binding sites will be characterized and predicted, respectively.</p><p dir="ltr"><b>Methods</b></p><p dir="ltr">Whole-cell, voltage clamp electrophysiology experiments were performed in HEK 293 cells stably expressing hERG (hERG-HEK) and both hERG and wild-type CaMKIIδ<br>(hERG/CaMKII-HEK) following treatment with isoproterenol for 48 hours, and after transfection with miR-362-3p. The effect of CaMKII activation on miR-362-3p was assessed using real-time quantitative polymerase chain reaction (RT-qPCR). Total RNA was isolated 48 hours after isoproterenol treatment and the TaqMan assay was used to reverse transcribe and analyze miR-362-3p expression. Cells were transfected with cJun siRNA and precursor miR-362-3p to assess the role of cJun miR-362-3p upregulation during sustained β-AR stimulation with isoproterenol. The interactome of miR-362-3p was assessed in both cell lines using enhanced crosslinking immunoprecipitation (eCLIP) assay. miR-362-3p binding sites were predicted using RNAStructure Duplexfold after identification of miR-362-3p chimeric molecules from eCLIP experiment. Interaction analysis was performed using GeneMania in Cytoscape to identify genes that were potentially downregulated by miR-362-3p and been reported to interact with hERG.</p><p dir="ltr"><b>Results</b></p><p dir="ltr">In Specific Aim 1, the effect of sustained β-AR stimulation on hERG currents and endogenous miR-362-3p was assessed in hERG-HEK and hERG/CaMKII-HEK cells. Using whole-cell voltage clamp electrophysiology, we demonstrated that 48 hours treatment with 100 nM isoproterenol reduced hERG currents in hERG/CaMKII-HEK cells (p = 0.032) but had no effect on the voltage dependence of activation (p = 0.61) relative to control vehicle. Isoproterenol treatment for 48 hours, however, had no effect on hERG currents (p = 0.58) and the voltage dependence of activation (p = 0.99) in hERG-HEK cells. The effect of sustained isoproterenol treatment on miR-362-3p was also assessed using RT-qPCR. In hERG/CaMKII cells, 48 hours isoproterenol treatment increased miR-362-3p expression (2.3 folds; p = 0.038) relative to control vehicle. hERG/CaMKII-HEK cells were also treated with 500 nM KN-93 or its inactive analogue, KN-92, in an attempt to reverse CaMKII effect on miR-362-3p expression. Treatment with KN-93 decreased miR-362-3p expression (0.5-fold; p = 0.002) relative KN-92 treatment. Isoproterenol treatment had no effect on miR-362-3p expression in hERG-HEK cells (p = 0.38).</p><p dir="ltr">The regulatory mechanism of miR-362-3p expression was evaluated in Specific Aim 2. The role of an activator protein-1 (AP-1)-like sequence located at 98 base pairs upstream of miR-362-3p transcription start site was probed using siRNA inhibition of cJun, a central protein of the AP-1 complex, and deletion of the site sequence. The effect of exogenous miR-362-3p on hERG currents were first assessed. Precursor miR-362-3p decreased hERG currents (p = 0.003) compared to control plasmid. The effect of CaMKII overexpression was also assessed on exogenous miR-363-3p expression. Isoproterenol treatment in hERG/CaMKII-HEK cells transfected with precursor miR-362-3p increased mature miR-362-3p expression (0.029) compared to control vehicle treatment. Inhibition of cJun inhibition with cJun-specific siRNA decreased mature miR-362-3p expression (0.5-fold; p = 0.027) compared to scramble siRNA in hERG-HEK cells. In hERG-HEK cells transfected with mutated precursor miR-362-3p (AP-1-like site deleted), cJun inhibition with siRNA had no effect on miR-362-3p expression (p = 0.40).</p><p dir="ltr">The focus of Specific Aim 3 was to characterize the interactome of miR-362-3p as well as predict the miRNA response element (MRE) of its target mRNAs using enhanced crosslinking immunoprecipitation. A network analysis was also performed to identify miR-362-3p targets that have been reported to interact with hERG. Approximately 23% of miR-362-3p mRNA targets from the eCLIP assay have also been catalogued in miRNA database, TargetScanHuman, as miR-362-3p targets. miR-362-3p chimeric molecules with 853 unique targets, of which 75 were identified to interact with hERG through the network analysis. Four unique chimeric molecules between miR-362-3p and hERG mRNA were identified, but the interactions were non-canonical (located in the coding sequence of hERG and outside the seed region of miR-362-3p). Thirty five of the 75 miR-362-3p targets that were identified to interact had a chimeric read ≥ 3, a cutoff number indicating non-random chimeric formation. Using RNAStructure DuplexFold, miR-362-3p was predicted to form canonical binding with 12 of 35 mRNA targets. HSPA4, a heat shock protein involved in the maturation and trafficking of hERG, was identified in a canonical interaction (8-mer) with miR-362-3p.</p><p dir="ltr"><b>Conclusion</b>:</p><p dir="ltr">Sustained β-AR stimulation increases miR-362-3p expression and decreases hERG currents in CaMKII overexpressing cells. cJun mediates miR-362-3p upregulation by interacting with an AP-1-like sequence upstream of miR-362-3p transcription start site. Pathological regulation of <i>I</i><sub>Kr</sub> by CaMKII mediated by miR-362-3p during sustained-AR may contribute to increased risk of arrhythmias in states of increase catecholaminergic activity, such as HF.</p>

Page generated in 0.0357 seconds